Nothing Special   »   [go: up one dir, main page]

Skip to main content

Addressing the Bias of the Dice Coefficient

Semantic Segmentation of Peripheral Airways in Lung CT

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2024 (BVM 2024)

Part of the book series: Informatik aktuell ((INFORMAT))

Included in the following conference series:

  • 820 Accesses

Abstract

While self-configuring U-Net architectures excel at a vast majority of supervised medical image segmentation tasks, they strongly rely on the chosen loss function. We demonstrate that a commonly employed Dice or cross entropy loss leads to a bias of the trained network, that is critical for the clinical application of airway segmentation from CT scans. The effort to produce the most accurate segmentations is skewed towards larger anatomical structures, leaving smaller peripheral airways with poorer quality. To address this bias, we explore several different choices of amending the label definition, including morphological dilation, and find that separating the binary airway segmentations into at least two distinct structures yields substantial improvements of approximately 4% in peripheral areas. This finding could directly benefit several clinically relevant tasks, among others virtual CT bronchoscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Reichl T, Luo X, Menzel M, Hautmann H, Mori K, Navab N. Hybrid electromagnetic and image-based tracking of endoscopes with guaranteed smooth output. IJCARS. 2013;8:955– 65.

    Google Scholar 

  2. Falta F, Hansen L, Himstedt M, Heinrich MP. Learning an airway atlas from lung CT using semantic inter-patient deformable registration. Proc BVM. 2022:75–80.

    Google Scholar 

  3. Chauhan NS, Sood D, Takkar P, Dhadwal DS, Kapila R. Quantitative assessment of airway and parenchymal components of chronic obstructive pulmonary disease using thin-section helical computed tomography. Pol J Radiol. 2019;84:54–60.

    Google Scholar 

  4. Zhang M, Wu Y, Zhang H, Qin Y, Zheng H, Tang W et al. Multi-site, multi-domain airway tree modeling. Med Image Anal. 2023;90:102957.

    Google Scholar 

  5. Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.Nat Methods. 2021;(2):203– 11.

    Google Scholar 

  6. Tan Z, Feng J, Zhou J. SGNet: structure-aware graph-based network for airway semantic segmentation. Proc MICCAI. 2021:153–63.

    Google Scholar 

  7. Paetzold JC, Shit S, Ezhov I, Tetteh G, Ertürk A, Munich HZ et al. clDice—A novel connectivity-preserving loss function for vessel segmentation. Medical Imaging Meets NeurIPS 2019 Workshop. 2019.

    Google Scholar 

  8. Mishra D, Chaudhury S, Sarkar M, Soin AS. Ultrasound image segmentation: a deeply supervised network with attention to boundaries. IEEE Trans Biomed Eng. 2018;66(6):1637– 48.

    Google Scholar 

  9. Eisenmann M, Reinke A, Weru V, Tizabi MD, Isensee F, Adler TJ et al. Why is the winner the best? Proc IEEE CVPR. 2023:19955–66.

    Google Scholar 

  10. Armato III SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011;38(2):915–31.

    Google Scholar 

  11. Wasserthal J, Breit HC, Meyer MT, Pradella M, Hinck D, Sauter AWet al. Totalsegmentator: robust segmentation of 104 anatomic structures in ct images. Radiol Artif Intell. 2023;5(5).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenja Falta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Falta, F., Heinrich, M.P., Himstedt, M. (2024). Addressing the Bias of the Dice Coefficient. In: Maier, A., Deserno, T.M., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2024. BVM 2024. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-44037-4_66

Download citation

Publish with us

Policies and ethics