Abstract
Falls occurring at home are a high risk for elderly living alone. Several sensor-based methods for detecting falls exist and – in majority – use wearables or ambient sensors. Video-based fall detection is emerging. However, the restricted view of a single camera, distinguishing and tracking of persons, as well as high false-positive rates pose limitations.
Chapter PDF
Similar content being viewed by others
References
Taufeeque M, Koita S, Spicher N, et al. Multi-camera, multi-person, and real-time fall detection using long short term memory. Proc SPIE. 2021;Accepted.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Heinrich, C., Koita, S., Taufeeque, M., Spicher, N., Deserno, T.M. (2021). Abstract: Multi-camera, Multi-person, and Real-time Fall Detection using Long Short Term Memory. In: Palm, C., Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2021. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-33198-6_29
Download citation
DOI: https://doi.org/10.1007/978-3-658-33198-6_29
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-33197-9
Online ISBN: 978-3-658-33198-6
eBook Packages: Computer Science and Engineering (German Language)