Zusammenfassung
Deep neural networks have achieved tremendous success in various fields including medical image segmentation. However, they have long been criticized for being a black-box, in that interpretation, understanding and correcting architectures is diffcult as there is no general theory for deep neural network design. Previously, precision learning was proposed to fuse deep architectures and traditional approaches.
Chapter PDF
Similar content being viewed by others
Literatur
Fu W, Breininger K, Schaffert R, et al. A divide-and-conquer approach towards understanding deep networks. In: Proc - MICCAI 2019; 2019. p. 183–191.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Fu, W., Breininger, K., Schaffert, R., Ravikumar, N., Maier, A. (2020). Abstract: Divide-And-Conquer Approach Towards Understanding Deep Networks. In: Tolxdorff, T., Deserno, T., Handels, H., Maier, A., Maier-Hein, K., Palm, C. (eds) Bildverarbeitung für die Medizin 2020. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-29267-6_69
Download citation
DOI: https://doi.org/10.1007/978-3-658-29267-6_69
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-29266-9
Online ISBN: 978-3-658-29267-6
eBook Packages: Computer Science and Engineering (German Language)