Zusammenfassung
The accurate quantification of visceral and subcutaneous adipose tissue (VAT and SAT) has become a mayor interest worldwide, given that these tissue types represent an important risk factor of metabolic disorders. Currently, the gold standard for measuring volumes of VAT and SAT is the manual segmentation of abdominal fat images from 3D Dixon magnetic resonance (MR) scans – a very expensive and time-consuming process. To this end, we recently proposed Fat-SegNet [1] a fully automated pipeline to accurately segment adipose tissue inside a consistent anatomically defined abdominal region.
Chapter PDF
Similar content being viewed by others
Literatur
Estrada S, Lu R, Conjeti S, et al. FatSegNet: A Fully Automated Deep Learning Pipeline for Adipose Tissue Segmentation on Abdominal Dixon MRI. Journal of Magnetic Resonance Imaging. 2019;.
Goodfellow IJ,Warde-Farley D,MirzaM, et al. Maxout networks. In: Proceedings of the 30th International Conference on International Conference onMachine Learning-Volume 28. Atlanta,USA: JMLR. org; 2013. p. III–1319.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Estrada, S. et al. (2020). Abstract: Fully Automated Deep Learning Pipeline for Adipose Tissue Segmentation on Abdominal Dixon MRI. In: Tolxdorff, T., Deserno, T., Handels, H., Maier, A., Maier-Hein, K., Palm, C. (eds) Bildverarbeitung für die Medizin 2020. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-29267-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-658-29267-6_16
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-29266-9
Online ISBN: 978-3-658-29267-6
eBook Packages: Computer Science and Engineering (German Language)