Abstract
We gathered here some notes on Milner’s calculi of processes. We interpret the terms of these calculi as transition systems. We intoduce a calculus called MEIJE built on a monoid of synchronized actions and illustrate some general semantic notions:
-
we show the equivalence of this calculus with some others
-
we give an implementation in a calculus restricted to purely atomic actions
-
we show the universality of MEIJE with respect to the notion of effective transition system and sketch its expressive power with regard to synchronization operators.
Finally the concept of subcalculus is illustrated through the description in our language of the class of rational parallel place machines.
Résumé
On présente quelques notes sur la notion de calcul algébrique de processus due à Milner. Ici les terrnes de ces calculs sont interpétés comme des systèmes de transitions. Ayant introduit un calcul appelé MEIJE, qui est construit sur un monoide d’actions synchronisées, on illustre quelques définitions générales concernant la sémantique:
-
en montrant l’équivalence de ce calcul et de quelques autres,
-
en donnant und implémentation dans un calcul à actions purement atomiques,
-
en démontrant l’universalité de MEIJE par rapport à la notion de système de transition effectif et en esquissant son pouvior d’expression quant aux opérateurs de synchronization.
Enfin la notion de sous-calcul est illustrée par la description dans notre langage de la classe des machines à places rationnelles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Arnold & M. Nivat: “Comportements de processus”, Coll. AFCET “Les Mathématiques de l’Informatique” ( AFCET, Paris, 1981 )
D. Austry & G. Boudol: “Algébre de processus et synchronisations”, Theoret. Comput. Sci. 30 (1984) 91–131
G. Boudol, G. Roucairol & R. de Simone: “Petri nets and algebraic calculi of processes”, Rapport de Recherche INRIA 292 (1984)
S.D. Brookes: “On the relationship of CCS and CSP”, ICALP 83, Lecture Notes in Comput. Sci. 154 (1983) 83–96
S.D. Brookes & W.C. Rounds: “Behavioural equivalence relations induced by programming logics”, ICALP 83, Lecture Notes in Comput. Sci. 154 (1983) 97–108
S.D. Brookes, C.A.R. Hoare & A.W. Roscoe: “A theory of communicating sequential processes”, JACM 31 (1984) 560–599
Ph. Darondeau & L. Kott: “On the observational semantics of fair parallelism”, ICALP 83, Lecture Notes in Comput. Sci. 154 (1983) 147–159 s.a. Rapport de Recherche INRIA 262 (1983)
Ph. Darondeau: “Infinitary languages and fully abstract models of fair asynchrony”, Advanced Course on Logics and Models for Verification and Specification of Concurrent Systems, La Colle-sur-Loup (1984)
S. Eilenberg & M.P. Schutzenberger: “Rational sets in commutative monoids”, Journal of Algebra 13 (1969) 173–191
S. Eilenberg: “Automata, Languages and Machines”, vo1.A, Academic Press (1974)
J.S. Gourlay, W.C. Rounds & R. Statman: “On properties preserved by contractions of concurrent systems”, Intern. Symp. on Semantics of Concurrent Computations, Evian 79, G. Kahn Ed., Lecture Notes in Comput. Sci. -70 (1979) 51–65
M. Hennessy & R. Milner: “On observing nondeterminism and concurrency”, ICALP 80, Lecture Notes in Comput. Sci. 85 (1980) 299–309 s.a. “Algebraic laws for nondeterminism and concurrency” CSR-133–83, Computer Science Dept., Edinburgh Univ. (1983)
M. Hennessy, Wei Li & G. Plotkin: “A first attempt at translating CSP into CCS”, 2 nd Intern. Conf. on Distributed Computing Systems, Paris (1981) 105–115
M. Hennessy & R. de Nicola: “Testing equivalences for processes”, ICALP 83, Lecture Notes in Comput. Sci. 154 (1983) 548–560 s.a. CSR-123–82, Comput. Sci. Dept., Edinburgh Univ. (1982)
M. Hennessy: “Modelling finite delay operators”, CSR-153–83, Comput. Sci. Dept., Edinburgh Univ. (1983)
C.A.R. Hoare: “A model for communicating sequential processes”, Techn. Rep. PRG-22, Programming Research Group, Oxford Univ. (1981)
M. Jantzen: “The power of synchronizing operations on strings”, Theoret. Comput. Sci. 14 (1981) 127–154
K. Jensen: “A method to compare the descriptive power of different types of Petri nets”, MFCS B0, Lecture Notes in Comput. Sci. 88 (1980) 348–361
RM. Keller: “Formal verification of parallel programs”, CACM 19 (1976) 371–384
R Milner: “A Calculus of Communicating Systems”, Lecture Notes in Comput. Sci 92 (1980)
R Milner: “On relating synchrony and asynchrony”, CSR-75–80, Comput. Sci. Dept., Edinburgh Univ. (1981)
R. Milner: “Calculi for synchrony and asynchrony”, Theoret. Comput. Sci. 25 (1983) 267–310
R. Milner: “A complete inference system for a class of regular behaviour”, J. of Computer and Systems Sciences 28 (1984) 439–466
M. Nivat: “Synchronization of concurrent processes”, in “Formal Language Theory: Perspective and Open Problems”, R.V. Book, ed., A.P. (1980) 429454
W.F. Ogden, W.E. Riddle & W.C. Rands: “Complexity of expressions allowing concurrency”, 5 th ACM POPL (1978) 185–194
D. Park: “Concurrency and automata on infinite sequences”, 5th GI Conf., Lecture Notes in Comput. Sci. 104 (1981) 167–183
J.L. Peterson: “Petri Nets”, ACM Computing Surveys 9 (1977) 223–252
G. Plotkin: “A structural approach to operational semantics”, Daimi FN-19, Comput. Sci. Dept., Aarhus Univ. (1981)
G. Plotkin: “An operational semantics for CSP”, in “Formal Description of Programming Concepts II”, D. Bjorner, ed, North- Holland (1982) 199–225
A.C. Shaw: “Software description with flow expressions”, IEEE Trans. on Software Engineering 4 (1978) 242–254
J. Sifakis: “Property preserving homomorphisms of transition systems”, Logics of Programs, Lecture Notes in Comput. Sci. 164 (1984) 458–473
R. de Simone: “Langages infinitaires et produit de mixage”, Theoret. Comput. Sci. 31 (1984) 83–100
R. de Simone: “Calculabilité et expressivité dans l’algèbre de processus parallèles Meije”, Thèse de 3e cycle, Univ. Paris 7 (1984)
R. de Simone: “Note on Meije and SCCS: infinite sum operators ys non-guarded definitions”, Theoret. Comput. Sci. 30 (1984) 133–138
G. Winskel: “Synchronization trees”, CMU-CS-83–139, Comput. Sci. Dept., Carnegie-Mellon Univ. (1983) s.a. ICALP 83, Lecture Notes in Comput. Sci. 154 (1983) 695–711
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1985 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boudol, G. (1985). Notes on Algebraic Calculi of Processes. In: Apt, K.R. (eds) Logics and Models of Concurrent Systems. NATO ASI Series, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82453-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-82453-1_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-82455-5
Online ISBN: 978-3-642-82453-1
eBook Packages: Springer Book Archive