Nothing Special   »   [go: up one dir, main page]

Skip to main content

Neural Network Applications in the Edinburgh Concurrent Supercomputer Project

  • Conference paper
Neurocomputing

Part of the book series: NATO ASI Series ((NATO ASI F,volume 68))

  • 687 Accesses

Abstract

The Edinburgh Concurrent Supercomputer Project is built around a Meiko Computing Surface, with presently some 400 floating point transputers and 1.6 Gbytes of memory. The first part of this paper gives a brief overview of the Project’s origins and status. In the second part we review work in neural network models, including analogue neurons for image restoration, studies of texture discrimination and protein structure predictions using a multi-layer perceptron simulator. The problem of optimization of machine topology is also discussed in the context of irregular graphs and genetic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bowler, K.C., Bruce, A.D., Kenway, R.D., Pawley, G.S., Wallace, DJ. and McKendrick, A., Scientific Computation on the Edinburgh DAPs, University of Edinburgh Report, December 1987.

    Google Scholar 

  2. Bowler, K.C., Kénway, R.D., Pawley, G.S. and Roweth, D., An Introduction to Occam 2 Programming, Chartwell-Bratt, Bromley 1987.

    Google Scholar 

  3. Wexler, J. and Wilson, G.V., Edinburgh Concurrent Supercomputer Project Directory, 1988.

    Google Scholar 

  4. Norman, M.G. and Fisher, R.B., Surface tracking within three dimensional datasets, using a generalised message passing harness, in Developments using occam (J. Kerridge, ed.) pp77–82, IOS Amsterdam, 1988.

    Google Scholar 

  5. Norman, M.G. and Wilson S., The TITCH User Guide; Clarke, L.J., The Tiny User Guide, available from the ECS Project, Edinburgh University Computing Service.

    Google Scholar 

  6. Prior, D., Radcliffe, N.J., Norman, M.G. and Clarke, L. J., Concurrency: Practice and Experience, to appear.

    Google Scholar 

  7. Valiant, L.G., Optimally universal parallel computers, in Scientific Applications of Multiprocessors (R.J. Elliott and C.A.R. Hoare, eds.) pp. 17–20, Prentice Hall International Series in Computer Science 1989.

    Google Scholar 

  8. Clarke, L. J., Rian User Guide, available from ECS Project, Edinburgh University Computing Service.

    Google Scholar 

  9. Norman, M.G. and Maclachlan, S., submitted to Conf. on Engineering Applications of Transputers, Liverpool, 1989.

    Google Scholar 

  10. Hopfield, J.J. and Tank, D., Neural computation on decisions in optimisation problems, Biol. Cyber. 52, 141–152 (1984).

    MathSciNet  Google Scholar 

  11. Wilson, G.V. and Pawley, G.S., On the stability of the travelling salesman problem of Hopfield and Tank, Biol. Cyber. 58 63–70 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  12. Tank, D.W. and Hopfield, J. J., AT&T Bell Labs preprint (1985).

    Google Scholar 

  13. Fox, G.C. and Furmanski, W., The physical structure of concurrent problems and concurrent computers, in Scientific Applications of Multiprocessors (RJ. Elliott and C.A.R. Hoare, eds.) pp. 55–88, Prentice Hall International Series in Computer Science 1989.

    Google Scholar 

  14. Geman, S. and Geman, D., Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, IEEE Trans PAMI 5, 721–741 (1984).

    Article  Google Scholar 

  15. Murray, D.W., Kashko, A. and Buxton, B., A parallel approach to the picture restoration algorithm of Geman and Geman, IVC 3 133–142 (1985).

    Google Scholar 

  16. Kirkpatrick, S., Gellat, C.D. and Vecchi, M.P., Optimisation by simulated annealing, Science 220, 671–680 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  17. Forrest, B.M., Restoration of binary images using networks of analogue neurons, in Parallel Architectures and Computer Vision (I. Page, ed.) pp. 19–31, Oxford University Press 1988.

    Google Scholar 

  18. Simmen, M. and Wilson G.V., A comparison of two parallel implementations of the Durbin and Willshaw algorithm for solving the travelling salesman problem, submitted to Concurrency: Practice and Experience.

    Google Scholar 

  19. Richards, G.D., Implementation of back-propagation on a transputer array, in Proc. 8th Technical Meeting of the Occam User Group (J. Kerridge, ed.) pp. 173–179, IOS Amsterdam 1988.

    Google Scholar 

  20. Richards, G.D., Documentation for Rhwydwaith, available from the ECS project, Edinburgh University Computing Service.

    Google Scholar 

  21. Smieja, F.J. and Richards, G.D., Hard learning the easy way — backpropagation with deformation, Complex Systems, to appear.

    Google Scholar 

  22. Dodd, N., Texture discrimination using multi-layer perceptrons, Pattern Recognition Letters, in press.

    Google Scholar 

  23. Brodatz, P., Textures — A Photographic Album for Artists and Designers, Dover, New York (1966).

    Google Scholar 

  24. Qian, N. and Sejnowski, T., Predicting the secondary structure of globular proteins using neural network models, J. Mol. Biol. 2020, 865–864 (1988).

    Article  Google Scholar 

  25. Smieja, FJ., The significance of underlying correlations in the training of a layered net, presented at the INNS Conf., Boston, 1988. Edinburgh preprint, unpublished.

    Google Scholar 

  26. Smieja, FJ., MLP solutions, generalisation, and hidden unit representations, in Proc. DANIP Workshop, Bonn, 1989

    Google Scholar 

  27. Muhlenbein, H., Gorges-Schleuter, M. and Kramer, O., Evolution algorithms in combinatorial optimisation, Parallel Computing 7 65–85 (1985).

    Article  Google Scholar 

  28. Radcliffe, N J., Early clustering around optima, Edinburgh preprint in preparation.

    Google Scholar 

  29. Norman, M.G., A genetic approach to topology optimisation for multiprocessor architectures, submitted to Parallel Computing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Norman, M.G. et al. (1990). Neural Network Applications in the Edinburgh Concurrent Supercomputer Project. In: Soulié, F.F., Hérault, J. (eds) Neurocomputing. NATO ASI Series, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76153-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76153-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76155-3

  • Online ISBN: 978-3-642-76153-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics