Abstract
We consider general systems of ordinary and partial differential equations from a geometric point of view. This leads to simple interpretations of various index concepts introduced for differential algebraic equations. Especially, we obtain natural generalisations of these concepts to partial differential equations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. Classics in Applied Mathematics 14. SIAM, Philadelphia, 1996.
R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt, and P.A. Griffiths. Exterior Differential Systems. Mathematical Sciences Research Institute Publications 18. Springer-Verlag, New York, 1991.
S.L. Campbell and C.W. Gear. The index of general nonlinear DAEs. Numer. Math., 72:173–196, 1995.
S.L. Campbell and E. Griepentrog. Solvability of general differential algebraic equations. SIAM J. Sci. Comp., 16:257–270, 1995.
S.L. Campbell and W. Marszalek. The index of an infinite dimensional implicit system. Math. Model. Syst., 1:1–25, 1996.
P.A.M. Dirac. Generalized Hamiltonian dynamics. Can. J. Math., 2:129–148, 1950.
E. Hairer, C. Lubich, and M. Roche. The Numerical Solution of Differential-Algebraic Equations by Runge-Kutta Methods. Lecture Notes in Mathematics 1409. Springer-Verlag, Berlin, 1989.
E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Springer Series in Computational Mathematics 14. Springer-Verlag, Berlin, 1996.
M. Janet. Sur les Systèmes d’quations aux Dérivées Partielles. J. Math. Pure Appl., 3:65–151, 1920.
B.N. Jiang, J. Wu, and L.A. Povelli. The origin of spurious solutions in computational electrodynamics. J. Comp. Phys., 125:104–123, 1996.
F. John. Partial Differential Equations. Applied Mathematical Sciences 1. Springer-Verlag, New York, 1982.
P. Kunkel and V. Mehrmann. Canonical forms for linear differential-algebraic equations with variable coefficients. J. Comp. Appl. Math., 56:225–251, 1994.
P. Kunkel and V. Mehrmann. A new look at pencils of matrix valued functions. Lin. Alg. Appl., 212/213:215–248, 1994.
G. Le Vey. Some remarks on solvability and various indices for implicit differential equations. Num. Algo., 19:127–145, 1998.
W. Lucht and K. Strehmel. Discretization based indices for semilinear partial differential algebraic equations. Technical Report 97–40, Fachbereich Mathematik und Informatik, Universität Halle-Wittenberg, 1997.
W. Lucht, K. Strehmel, and C. Eichler-Liebenow. Linear partial differential algebraic equations I: Indexes, consistent boundary/initial conditions. Technical Report 97–17, Fachbereich Mathematik und Informatik, Universität Halle- Wittenberg, 1997.
W. Lucht, K. Strehmel, and C. Eichler-Liebenow. Linear partial differential algebraic equations II: Numerical solution. Technical Report 97–18, Fachbereich Mathematik und Informatik, Universität Halle- Wittenberg, 1997.
J.F. Pommaret. Systems of Partial Differential Equations and Lie Pseudo-groups. Gordon &; Breach, London, 1978.
J.F. Pommaret. Partial Differential Equations and Group Theory. Kluwer, Dordrecht, 1994.
J.F. Pommaret and A. Haddak. Effective methods for systems of algebraic partial differential equations. In T. Mora and C. Traverso, editors, Proc. MEGA’90, pages 411–426. Birkhäuser, Boston, 1991.
P.J. Rabier and W.C. Rheinboldt. A geometric treatment of implicit differential algebraic equations. J. Diff. Eq., 109:110–146, 1994.
S. Reich. On an existence and uniqueness theory for nonlinear differential- algebraic equations. Circ. Sys. Sig. Proc., 10:343–359, 1991.
M. Renardy and R.C. Rogers. An Introduction to Partial Differential Equations. Texts in Applied Mathematics 13. Springer, New York, 1993.
J. Schü, W.M. Seiler, and J. Calmet. Algorithmic methods for Lie pseudogroups. In N. Ibragimov, M. Torrisi, and A. Valenti, editors, Proc. Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics, pages 337–344. Kluwer, Dordrecht, 1993.
W.M. Seiler. Analysis and Application of the Formal Theory of Partial Differential Equations. PhD thesis, School of Physics and Materials, Lancaster University, 1994.
W.M. Seiler. On the arbitrariness of the general solution of an involutive partial differential equation. J. Math. Phys., 35:486–498, 1994.
W.M. Seiler. Applying AXIOM to partial differential equations. Internal Report 95–17, Universität Karlsruhe, Fakultät für Informatik, 1995.
W.M. Seiler. Generalized tableaux and formally well-posed initial value problems. Preprint Lancaster University, 1995.
W.M. Seiler. Involution and symmetry reductions. Math. Comp. Model., 25:63–73, 1997.
W.M. Seiler. Numerical analysis of constrained Hamiltonian systems and the formal theory of differential equations. Math. Comp. Simul., 45:561–576, 1998.
W.M. Seiler and R.W. Tucker. Involution and constrained dynamics I: The Dirac approach. J. Phys. A, 28:4431–4451, 1995.
J.W. Sweeny. The D-Neumann problem. Acta Math., 120:223–251, 1968.
A. Szatkowski. Geometric characterization of singular differential algebraic equations. Int. J. Sys. Sci., 23:167–186, 1992.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Seiler, W.M. (1999). Indices and Solvability for General Systems of Differential Equations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing CASC’99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60218-4_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-60218-4_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66047-7
Online ISBN: 978-3-642-60218-4
eBook Packages: Springer Book Archive