Abstract
Rigid image registration is an essential image processing task, with a large body of applications. This problem is usually formulated in the continuous domain, often in the context of an optimization framework. This approach leads to sometimes unwanted artifacts, e.g. due to interpolation. In the case of purely discrete applications, e.g., for template-based segmentation or classification, it is however preferable to avoid digitizing the result again after transformation. In this article, we deal with this point of view in the 2D case. Based on a fully discrete framework, we explicitly explore the parameter space of rigid transformations. This exploration leads to a local search scheme that can be involved in combinatorial optimization strategies.
Chapter PDF
Similar content being viewed by others
Keywords
References
Hajnal, J.V., Hill, D.L.G., Hawkes, D.J.: Medical Image Registration. CRC Press (2001)
Schowengerdt, R.A.: Remote Sensing: Models and Methods for Image Processing, 3rd edn. Elsevier Academic Press (2007)
Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys 38(4), 1–45 (2006)
Zitová, B., Flusser, J.: Image registration methods: A survey. Image and Vision Computing 21(11), 977–1000 (2003)
Bazin, P.-L., Pham, D.L.: Topology-preserving tissue classification of magnetic resonance brain images. IEEE Transactions on Medical Imaging 26(4), 487–496 (2007)
Faisan, S., Passat, N., Noblet, V., Chabrier, R., Meyer, C.: Topology preserving warping of 3-D binary images according to continuous one-to-one mappings. IEEE Transactions on Image Processing 20(8), 2135–2145 (2011)
Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial structure of rigid transformations in 2D digital images. Computer Vision and Image Understanding 117(4), 393–408 (2013)
Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial properties of 2D discrete rigid transformations under pixel-invariance constraints. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 234–248. Springer, Heidelberg (2012)
Boykov, Y., Kolmogorov, V., Cremers, D., Delong, A.: An integral solution to surface evolution PDEs via geo-cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 409–422. Springer, Heidelberg (2006)
Amintoosi, M., Fathy, M., Mozayani, N.: A fast image registration approach based on SIFT key-points applied to super-resolution. Imaging Science Journal 60(4), 185–201 (2011)
Pedro, F.F., Daniel, P.H.: Distance transforms of sampled functions. Theory of Computing 8(19), 415–428 (2012)
Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. John Wiley & Sons, Inc. (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ngo, P., Sugimoto, A., Kenmochi, Y., Passat, N., Talbot, H. (2014). Discrete Rigid Transformation Graph Search for 2D Image Registration. In: Huang, F., Sugimoto, A. (eds) Image and Video Technology – PSIVT 2013 Workshops. PSIVT 2013. Lecture Notes in Computer Science, vol 8334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53926-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-53926-8_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-53925-1
Online ISBN: 978-3-642-53926-8
eBook Packages: Computer ScienceComputer Science (R0)