Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Spontaneous Behavior in Extreme Events: A Clustering-Based Quantitative Analysis

  • Conference paper
Advanced Data Mining and Applications (ADMA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8346))

Included in the following conference series:

Abstract

Social media records the pulse of social discourse and drives human behaviors in temporal and spatial dimensions, as well as the structural characteristics. These online contexts give us an opportunity to understand social perceptions of people in the context of certain events, and can help us improve disaster relief. Taking Twitter as data source, this paper quantitatively measures exogenous and endogenous social influences on collective behaviors in different events based on standard fluctuation scaling method. Different from existing studies utilizing manual keywords to denote events, we apply a clustering-based event analysis to identify the core event and its related episodes in a hashtag network. The statistical results show that exogenous factors drive the amount of information about an event and the endogenous factors play a major role in the propagation of hashtags.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yin, J., Lampert, A., Cameron, M., Robinson, B., Power, R.: Using social media to enhance emergency situation awareness. IEEE Intelligent Systems 27(6), 52–59 (2012)

    Article  Google Scholar 

  2. Adam, N.R., Shafiq, B., Staffin, R.: Spatial computing and social media in the context of disaster management. IEEE Intelligent Systems 27(6), 90–96 (2012)

    Article  Google Scholar 

  3. Jones, J.H., Salathe, M.: Early assessment of anxiety and behavioral response to novel swine-origin influenza A(H1N1). PLoS ONE 4(12), e8032 (2009)

    Google Scholar 

  4. Oh, O., Kwon, K.H., Rao, H.R.: An exploration of social media in extreme events: rumor theory and twitter during the Haiti earthquake 2010. In: Proceedings of 31st International Conference on Information Systems (ICIS 2010), paper 231 (2010)

    Google Scholar 

  5. Onnela, J.P., Reed-Tsochas, F.: Spontaneous emergence of social influence in online systems. Proceedings of the National Academy of Sciences 107(43), 18375–18380 (2010)

    Article  Google Scholar 

  6. Lehmann, J., Goncalves, B., Ramasco, J.J., Cattuto, C.: Dynamical classes of collective attention in Twitter. In: Proceedings of the 21st World Wide Web Conference (WWW 2012), pp. 251–260 (2012)

    Google Scholar 

  7. Signorini, A., Segre, A.M., Polgreen, P.M.: The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza a H1N1 pandemic. PLoS ONE 6(5), e19467 (2011)

    Google Scholar 

  8. Sasahara, K., Hirata, Y., Toyoda, M., Kitsuregawa, M., Aihara, K.: Quantifying collective attention from Tweet stream. PLoS ONE 8(4), e61823 (2013)

    Google Scholar 

  9. Crane, R., Sornette, D.: Robust dynamic classes revealed by measuring the response function of a social system. Proceedings of the National Academy of Sciences of the United States of America 105(41), 15649–15653 (2008)

    Article  Google Scholar 

  10. Sakaki, T., Okazaki, M., Matsuo, Y.: Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Transactions on Knowledge and Data Engineering 25(4), 919–931 (2013)

    Article  Google Scholar 

  11. Sarma, A.D., Jain, A., Yu, C.: Dynamic relationship and event discovery. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining (WSDM 2011), pp. 207–216 (2011)

    Google Scholar 

  12. Mendonca, D., Wallace, W.A.: A cognitive model of improvisation in emergency management. IEEE Transactions on Systems, Man, and Cybernetics- Part A: System and Humans 37(4), 547–561 (2007)

    Article  Google Scholar 

  13. Lindell, M.K., Prater, C.S., Perry, R.W.: Fundamentals of Emergency Management. Federal Emergency Management Agency Emergency Management Institute, Emmitsburg (2006)

    Google Scholar 

  14. Gao, C., Liu, J.: Clustering-based media analysis for understanding human emotional reactions in an extreme event. In: Chen, L., Felfernig, A., Liu, J., Raś, Z.W. (eds.) ISMIS 2012. LNCS, vol. 7661, pp. 125–135. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Figueriredo, F., Benevenuto, F., Almeida, J.: The tube over time: characterizing popularity growth of youtube videos. In: Proceedings of the 4th International Conference on Web Search and Data Mining (WSDM 2011), pp. 745–754 (2011)

    Google Scholar 

  16. Bassett, D.S., Alderson, D.L., Carlson, J.M.: Collective decision dynamics in the presence of external drivers. Physical Review E 85, 036105 (2012)

    Google Scholar 

  17. Myers, S., Chenguang, Z., Leskovec, J.: Information diffusion and external influence in networks. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2012), pp. 33–41 (2012)

    Google Scholar 

  18. de Menezes, M.A., Barabasi, A.-L.: Separating internal and external dynamics of complex systems. Physical Review Letters 93(6), 068701 (2004)

    Google Scholar 

  19. Thelwall, M., Wilkinson, D., Uppal, S.: Data mining emotion in social network communication: Gender differences in MySpace. Journal of the American Society for Information Science and Technology 61(1), 190–199 (2010)

    Article  Google Scholar 

  20. O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: linking text sentiment to public opinion time series. In: Proceedings of the 4th International AAAI Conference on Weblogs and Social Media (ICWSM 2010), pp. 122–129 (2010)

    Google Scholar 

  21. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. Journal of Computational Science 2(1), 1–8 (2011)

    Article  Google Scholar 

  22. Christakis, N.A., Fowler, J.H.: The spread of obesity in a large social network over 32 Years. The New England Journal of Medicine 357(4), 370–379 (2007)

    Article  Google Scholar 

  23. Durham, D., Casman, E.: Incorporating Individual health-protective decisions into disease transmission models: a mathematical framework. Journal of The Royal Society Interface 9, 562–570 (2012)

    Article  Google Scholar 

  24. Moran, J., Cordaro, J.: Understanding the hit-rate dynamics of a large website with an agent-based model. In: Processing of 8th International Conference on Autonomous Agents and Multiagent System (AAMAS 2009), pp. 105–109 (2009)

    Google Scholar 

  25. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event eetection by social sensors. In: Proceedings of the 19th International World Wide Web Conference (WWW 2010), pp. 851–860 (2010)

    Google Scholar 

  26. Sano, Y., Yamada, K., Watanabe, H., Takayasu, H., Takayasu, M.: Empirical analysis of collective human behavior for extraordinary events in the blogosphere. Physical Review E 87(1), 012805 (2013)

    Google Scholar 

  27. Matsubara, Y., Sakurai, Y., Prakash, B.A., Li, L., Faloutsos, C.: Rise and fall patterns of information diffusion: model and implications. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2012), pp. 6–14 (2012)

    Google Scholar 

  28. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Physical Review E 69(6), 066133 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, N., Gao, C., Zhang, Z., Zhong, L., Huang, J. (2013). The Spontaneous Behavior in Extreme Events: A Clustering-Based Quantitative Analysis. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds) Advanced Data Mining and Applications. ADMA 2013. Lecture Notes in Computer Science(), vol 8346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53914-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53914-5_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53913-8

  • Online ISBN: 978-3-642-53914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics