Abstract
Real time data warehouse is the research hotspots of data warehouse. It expands the application scope of data warehouse and provides real-time decision-making system for business users. This paper describes the concepts of real time data warehouse and proposes a real time data warehouse architecture which is based on real-time cache storage. The architecture consists of three main components: real-time data capture and integration, business event management component and view materialization decision. There are two key technologies: real-time data extraction and materialized view decision-making. This paper describes existing solutions and their shortcomings, then proposes feasible technical solutions: real-time data extraction based on transaction log analysis and materialized view estimation model with time factor.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brobst, S., Rarey, J.: The five stages of an active data warehouse evolution. Teradata Magazine 3(1), 38–44 (2001)
Schrefl, M., Thalhammer, T.: On making data warehouses active. In: Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, p. 34. Springer, Heidelberg (2000)
Majeed, F., Mahmood, M.S., Iqbal, M.: Efficient data streams processing in the real time data warehouse. In: 3rd IEEE International Conference on Computer Science and Information Technology, vol. 5, pp. 57–61 (2010)
Lin, Z., Zhang, D., Lin, C., Lai, Y., Zou, Q.: Performance Optimization of Analysis Rules in Real-Time Active Data Warehouses. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G. (eds.) APWeb 2012. LNCS, vol. 7235, pp. 669–676. Springer, Heidelberg (2012)
Jie, S., Yubin, B., Jingang, S.: A Triggering and Scheduling Approach for ETL in a Real-time Data Warehouse. In: IEEE 10th International Conference on Computer and Information Technology, pp. 91–98 (2010)
Song, G., Yang, D., Lin, Z., Tang, S., Wang, T., Xie, K.: Active real time data warehouse concepts, problems and applications. Journal of Computer Research and Development 44(suppl.), 441–446 (2007)
Qi, W.: Research of Real-time Data Warehouse Architectur. Eastern Liaoning University Journal 15(1) (2008)
Jörg, T., Dessloch, S.: Near Real-Time Data Warehousing Using State-of-the-Art ETL Tools. In: Castellanos, M., Dayal, U., Miller, R.J. (eds.) BIRTE 2009. LNBIP, vol. 41, pp. 100–117. Springer, Heidelberg (2010)
Hou, D., Lu, C., Liu, Q., Zhang, W.: Data cube computation methods overview. Computer Science (2008)
Qi, W., Xu, B., Tang, H.: Materialized view selection in Data Cube. Henan University Journal 31(1), 20–24 (2001)
Ren, J., Li, Z., Zong, J.: Data warehouse materialized view selection method research. Computer Research and Development 43(suppl.), 621–625 (2006)
Tang, H., Zou, L.: Dynamic selection of Multidimensional materialized views. Software Journal 13(6), 1090–1096 (2002)
Huang, Z., Xue, Y., Wen, J., Cai, J., Wen, W.: DSSMV - Dynamic Selection Strategy of Materialized Views of Multi-Dimensional Data. Computer Science 32(7), 363–368 (2005)
Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. In: Proc. of the 1996 ACM SIGMOD Int‘l Conf. on Management of Data, pp. 205–227. ACM Press, New York (1996)
Amit, S., Deshpande, P.M.: Materialized view selection for multidimensional datasets. In: Proc. of the 24th Int‘l VLDB Conference, San Francisco, pp. 488–499 (1998)
Thiele, M., Lehner, W.: Evaluation of Load Scheduling Strategies for Real-Time Data Warehouse Environments. In: Castellanos, M., Dayal, U., Miller, R.J. (eds.) BIRTE 2009. LNBIP, vol. 41, pp. 84–99. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jia, R., Xu, S., Peng, C. (2013). Research on Real Time Data Warehouse Architecture. In: Yang, Y., Ma, M., Liu, B. (eds) Information Computing and Applications. ICICA 2013. Communications in Computer and Information Science, vol 392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53703-5_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-53703-5_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-53702-8
Online ISBN: 978-3-642-53703-5
eBook Packages: Computer ScienceComputer Science (R0)