Abstract
This paper presents the research and comparison of four methods of hand characteristic points detection. Each method was implemented and modified in order to test their capabilities on database for hand gesture recognition. All methods are explained, tested and compared to others with other leading to final remarks. The main purpose of the research is to choose the best algorithm giving the most information about human hand that would lead to create a human – computer interaction program.
Chapter PDF
Similar content being viewed by others
References
Grzejszczak, T., Nalepa, J., Kawulok, M.: Real-time wrist localization inhand silhouettes. In: Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013, pp. 439–449. Springer, Heidelberg (2013)
Czupryna, M., Kawulok, M.: Real-time vision pointer interface. In: Proceedings of International Symposium ELMAR 2012, pp. 49–52 (2012)
Tanibata, N., Shimada, N., Shirai, Y.: Extraction of hand features for recognition of sign language words. In: Proceedings of the International Conference on Vision Interface, pp. 391–398 (2002)
Stergiopoulou, E., Papamarkos, N.: Hand gesture recognition using a neural network shape fitting technique. Engineering Applications of Artificial Intelligence 22, 1141–1158 (2009)
Kawulok, M., Kawulok, J., Nalepa, J.: Spatial-based skin detection using discriminative skin-presence features. Pattern Recognition Letters (2013) (article in press)
Kawulok, M.: Fast propagation-based skin regions segmentation in color images. In: Proceedings of 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, pp. 1–7 (2013)
Kawulok, M., Grzejszczak, T., Nalepa, J., Knyc, M.: Database for hand gesture recognition (2012), http://sun.aei.polsl.pl/~mkawulok/gestures/
Kawulok, M., Kawulok, J., Nalepa, J., Papiez, M.: Skin detection using spatial analysis with adaptive seed. In: Proceedings ofIEEE International Conference on Image Processing (ICIP 2013), pp. 3720–3724 (2013)
Kovac, J., Peer, P., Solina, F.: Human skin color clustering for face detection. IEEE REGION 8 EUROCON 2003, Computer as a Tool 2, 144–148 (2003)
Jones, M., Rehg, J.: Statistical color models with application to skin detection. International Journal of Computer Vision 46, 81–96 (2002)
Kakumanu, P., Makrogiannis, S., Bourbakis, N.G.: A survey of skin-color modeling and detection methods. Pattern Recogn. 40, 1106–1122 (2007)
Phung, S.L., Chai, D., Bouzerdoum, A.: Adaptive skin segmentation in color images. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. 353–356 (2003)
Soriano, M., Martinkauppi, B., Huovinen, S., Laaksonen, M.: Skin detection in video under changing illumination conditions. In: 15th International Conference on Pattern Recognition (ICPR 2000), vol. 1, pp. 839–842 (2000)
Solar, J.R., Verschae, R.: Skin detection using neighborhood information. In: 6th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 463–468 (2004)
Sato, Y., Kabayashi, Y., Koike, H.: Fast Tracking of Hands and Fingertips in Infrared Images for Augmented Desk Interface. In: Proceedings of 4th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 462–467 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 IFIP International Federation for Information Processing
About this paper
Cite this paper
Grzejszczak, T., Gałuszka, A., Niezabitowski, M., Radlak, K. (2014). Comparison of Hand Feature Points Detection Methods. In: Camarinha-Matos, L.M., Barrento, N.S., Mendonça, R. (eds) Technological Innovation for Collective Awareness Systems. DoCEIS 2014. IFIP Advances in Information and Communication Technology, vol 423. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54734-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-54734-8_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54733-1
Online ISBN: 978-3-642-54734-8
eBook Packages: Computer ScienceComputer Science (R0)