Abstract
The present text surveys some relevant situations and results where basic Module Theory interacts with computational aspects of operator algebras. We tried to keep a balance between constructive and algebraic aspects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramov, S.A., Le, H.Q., Li, Z.: Oretools: A computer algebra library for univariate Ore polynomial rings. Technical report, Technical Report CS-2003-12. University of Waterloo (2003)
Adams, W., Loustaunau, P.: An introduction to Gröbner Bases. AMS, Providence (1994)
Anderson, F.W., Fuller, K.R.: Rings and categories of modules, 2nd edn. Springer, New York (1992)
Andres, D., Brickenstein, M., Levandovskyy, V., Martín-Morales, J., Schönemann, H.: Constructive D-Module Theory with SINGULAR. Math. Comput. Sci. 4(2-3), 359–383 (2010)
Apel, J.: A relationship between Gröbner bases of ideals and vector modules of G-algebras. Contemporary Mathematics 21(pt-2, 195–204 (1992)
Apel, J., Klaus, U.: FELIX, a special computer algebra system for the computation in commutative and non-commutative rings and modules (1998), http://felix.hgb-leipzig.de/
Apel, J., Lassner, W.: An extension of Buchberger’s algorithm and calculations in enveloping fields of Lie algebras. J. Symbolic Comput. 6, 361–370 (1988)
Apel, J., Melenk, H.: REDUCE package NCPOLY: Computation in non-commutative polynomial ideals, Konrad-Zuse-Zentrum Berlin, ZIB (1994) (preprint)
Barakat, M., Robertz, D.: Homalg: A meta-package for homological algebra. J. Algebra Appl. 7, 299–317 (2008), http://homalg.math.rwth-aachen.de
Barkatou, M.: A Rational solutions of matrix difference equation. problem of equivalence and factorisation. In: Proceedings of ISSAC 1999, pp. 277–282. ACM Press (1999)
Barkatou, M.A.: Factoring systems of linear functional equations using eigenrings. Latest Advances in Symbolic Algorithms. In: Kotsireas, I., Zima, E. (eds.) Proc. of the Waterloo Workshop, pp. 22–42. World Scientific, Ontario (2007)
Barkatou, M.A., Cluzeau, T., El Bacha, C., Weil, J.-A.: Computing closed form solutions of integrable connections. In: Proceedings of the International Symposium on Symbolic and Algebraic Computations (ISSAC 2012), pp. 43–50. ACM Press (2012), http://www.ensil.unilim.fr/~cluzeau/PDS.html
Barkatou, P.A., Pflügel, E.: On the Equivalence Problem of Linear Differential Systems and its Application for Factoring Completely Reducible Systems. In: Proceedings of ISSAC 1998, pp. 268–275. ACM Press (1998)
Barkatou, M.A., Pflügel, E.: The ISOLDE package. A SourceForge Open Source project (2006), http://isolde.sourceforge.net
Becker, T., Weispfenning, V.: Gröbner bases. A computational approach to commutative algebra. Springer (1993)
Beckermann, B., Cheng, H., Labahn, G.: Fraction-free row reduction of matrices of Ore polynomials. J. Symbolic Comput. 41, 513–543 (2006), http://www.cs.uleth.ca/~cheng/software/
Bergman, G.: The diamond lemma for ring theory. Adv. Math. 29, 178–218 (1978)
Björk, J.E.: Rings of differential operators, Mathematical Library, 21. North-Holland, Amsterdam (1979)
Björk, J.-E.: The Auslander condition on Noetherian rings. In: Malliavin, M.-P. (ed.) Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988). Lecture Notes in Math., vol. 1404, pp. 137–173. Springer, New York (1989)
Blinkov, Y.A., Cid, C.F., Gerdt, V.P., Plesken, W., Robertz, D.: The MAPLE package “Janet”: II. Linear Partial Differential Equations. In: Proceedings of the 6th International Workshop on Computer Algebra in Scientific Computing, pp. 41–54 (2003), http://wwwb.math.rwth-aachen.de/Janet
Bronstein, M., Petkovšek, M.: An introduction to pseudo-linear algebra. Theoret. Comput. Sci. 157, 3–33 (1996)
Bueso, J.L., Castro, F.J., Gómez-Torrecillas, J., Lobillo, F.J.: An introduction to effective calculus in quantum groups. In: Caenepeel, S., Verschoren, A. (eds.) Hopf algebras and Brauer groups, pp. 55–83. Marcel Dekker (1998)
Bueso, J.L., Castro, F.J., Gómez-Torrecillas, J., Lobillo, F.J.: Primality Test in iterated Ore extensions. Comm. Algebra 29, 1357–1371 (2001)
Bueso, J.L., Castro, F.J., Jara, P.: The effective computation of the Gelfand-Kirillov dimension. Proc. Edinburgh Math. Soc. 40, 111–117 (1997)
Bueso, J.L., Gómez-Torrecillas, J., Lobillo, F.J.: Homological Computations in PBW Modules. Alg. Repr. Theory 4, 201–218 (2001)
Bueso, J.L., Gómez-Torrecillas, J., Lobillo, F.J.: Computing the Gelfand-Kirillov dimension, II. In: Granja, A., Hermida, J.A., Verschoren, A. (eds.) Ring Theory and Algebraic Geometry, pp. 33–57. Marcel Dekker, New York (2001)
Bueso, J.L., Gómez-Torrecillas, J., Lobillo, F.J.: Re-filtering and exactness of the Gelfand-Kirillov dimension. Bull. Sci. Math. 125, 689–715 (2001)
Bueso, J.L., Gómez-Torrecillas, J., Verschoren, A.: Algorithmic methods in Non-Commutative Algebra. Applications to quantum groups. Kluwer Academic Publishers, Dordrecht (2003)
Caruso, X., Le Borgne, J.: Some algorithms for skew polynomials over finite fields, http://arxiv.org/abs/1212.3582
Castro, F.J.: Théorème de division pour les opérateurs différentielles et calcul des multiplicités. Thèse 3eme cycle, Univ. Paris VII (1984)
Cha, Y.: Packages tausqsols, solver, Hom (2012), https://sites.google.com/site/yongjaecha/code
Churchill, R.C., Kovacic, J.J.: Cyclic vectors. In: Proceedings of Differential Algebra and Related Topics, Newark, NJ, pp. 191–218. World Sci. Publ., River Edge (2002)
Chyzak, F., Quadrat, D., Robertz, D.: Effective algorithms for parametrizing linear control systems over Ore algebras. Appl. Algebra Eng. Comm. Comput. 16, 319–376 (2005)
Chyzak, F., Quadrat, A., Robertz, D.: OreModules: A symbolic package for the study of multidimensional linear systems. In: Chiasson, J., Loiseau, J.J. (eds.) Appl. of Time Delay Systems. LNCIS, vol. 352, pp. 233–264. Springer, Heidelberg (2007), http://wwwb.math.rwth-aachen.de/OreModules
Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate identities. J. Symbolic Comput. 26, 187–227 (1998), http://algo.inria.fr/chyzak/mgfun.html
Cluzeau, T., Quadrat, A.: Factoring and decomposing a class of linear functional systems. Linear Algebra Appl. 428, 324–381 (2008)
Cluzeau, T., Quadrat, A.: OreMorphisms: A homological algebraic package for factoring, reducing and decomposing linear functional systems. In: Loiseau, J.J., Michiels, W., Niculescu, S.-I., Sipahi, R. (eds.) Topics in Time Delay Systems. LNCIS, vol. 388, pp. 179–194. Springer, Heidelberg (2009)
Cohn, P.M.: Free rings and their relations. Academic Press, London (1971)
Davies, P., Cheng, H., Labahn, G.: Computing Popov form of general Ore polynomial matrices. In: Proceedings of the Milestones in Computer Algebra (MICA) Conference, pp. 149–156 (2008), http://www.cs.uleth.ca/~cheng/software/
Dixmier, J.: Enveloping algebras. North-Holland, Amsterdam (1977)
Foldenauer, A.C.: Gröbner Bases for Bimodules and its Applications: Jacobson normal form in centerless Ore extensions and Gröbner Basis theory for Bimodules in G-algebras. Diploma thesis, Univ. Aachen (2012)
Galligo, A.: Algorithmes de calcul de base standards (1983) (preprint)
Gerdt, V.P., Robertz, D.: A Maple package for computing Gröbner bases for linear recurrence relations. Nuclear Instruments and Methods in Physics Research Section A 559, 215–219 (2006), http://arxiv.org/abs/cs/0509070
Giesbrecht, M.: Factoring in skew-polynomial rings over finite fields. J. Symbolic Comput. 26, 463–486 (1998)
Giesbrecht, M., Heinle, A.: A polynomial-time algorithm for the Jacobson form of a matrix of Ore polynomials. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 117–128. Springer, Heidelberg (2012)
Giesbrecht, M., Zhang, Y.: Factoring and Decomposing Ore Polynomials over \(\mathbb{F}_q(t)\). In: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation (ISSAC 2003), pp. 127–134. ACM Press (2003)
Gluesing-Luerssen, H., Schmale, W.: On cyclic convolutional codes. Acta Appl. Math. 82, 183–237 (2004)
Gómez-Torrecillas, J.: Gelfand-Kirillov dimension of multi-filtered algebras. Proc. Edinburgh Math. Soc. 52, 155–168 (1999)
Gómez-Torrecillas, J.: Regularidad de las álgebras envolventes cuantizadas. Actas del Encuentro de Matemáticos Andaluces 2, 493–500 (2001)
Gómez-Torrecillas, J., Lenagan, T.H.: Poincaré series of multi-filtered algebras and partitivity. J. London Math. Soc. 62, 370–380 (2000)
Gómez-Torrecillas, J., Lobillo, F.J.: Auslander-Regular and Cohen-Macaulay Quantum Groups. Algebras Repr. Theory 7, 35–42 (2004)
Gómez-Torrecillas, J., Lobillo, F.J., Navarro, G.: Computing the bound of an Ore polynomial. Applications to Factorization, http://arxiv.org/abs/1307.5529
Grayson, D., Stillman, M.: Macaulay 2, A software system for research in algebraic geometry (2013), http://www.math.uiuc.edu/Macaulay2
Greuel, G.-M., Levandovskyy, V., Motsak, O., Schönemann, H.: Plural. A Singular 3.1 subsystem for computations with non-commutative polynomial algebras. Centre for Computer Algebra, TU Kaiserslautern (2010), http://www.singular.uni-kl.de
Greuel, G.-M., Motsak, O., Schönemann, H.: Singular: SCA. A Singular 3.1 subsystem for computations with graded commutative algebras (2011), http://www.singular.uni-kl.de
Grigoriev, D., Schwarz, F.: Factoring and solving linear partial differential equations. Computing 73, 179–197 (2004), http://www.alltypes.de/
Hazewinkel, M., Gubareni, N., Kirichenko, V.V.: Algebras, Rings and Modules, vol. 1. Kluwer Academic Publishers, Dordrecht (2004)
Heinle, A., Levandovskyy, V.: ncfactor.lib. A Singular 3.1 a library for factorization in some non-commutative algebras (2013), http://www.singular.uni-kl.de
Hilton, P.J., Stammbach, U.: A course in Homological Algebra. Springer, New York (1971)
Jacobson, N.: The Theory of Rings. AMS, Providence (1943)
Jacobson, N.: Basic Algebra. II. W. H. Freeman and Co., San Francisco (1980)
Jacobson, N.: Finite-Dimensional Division Algebras over Fields. Springer, New York (1996)
Kandri-Rody, A., Weispfenning, V.: Non-commutative Gröbner bases in algebras of solvable type. J. Symb. Comp. 6, 231–248 (1990)
Kauers, M., Jaroschek, M., Johansson, F.: Ore polynomials in Sage (2013), http://arxiv.org/abs/1306.4263
Koutschan, C.: HolonomicFunctions (user’s guide). Technical report, Technical report no. 10-01 in RISC Report Series, University of Linz, Austria (2010), http://www.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html
Krause, G.R., Lenagan, T.H.: Growth of Algebras and Gelfand-Kirillov Dimension, Revised edn. A.M.S, Rhode Island (2000)
Kredel, H.: Solvable Polynomial Rings. Verlag Shaker, Aachen (1993)
Kredel, H., Pesch, M.: MAS, modula-2 algebra system (1998), http://krum.rz.uni-mannheim.de/mas.html
Lassner, W.: An extension of Buchberger’s algorithm and calculations in enveloping fields of Lie algebras. In: Proc. EUROCAL 1985, Linz 1985. LNCS, vol. 204, pp. 99–115 (1985)
Lejeune-Jalabert, M.: Effectivité des calculs polynomiaux, Cours de D.E.A., Univ. Grénoble (1984–1985)
Leroy, A.: Pseudo linear transformations and evaluation in Ore extensions. Bull. Belg. Math. Soc. 2, 321–347 (1995)
Levandovskyy, V.: Non-commutative Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation, Ph. D. Thesis, Univ. Kaiserslautern (2005), http://kluedo.ub.uni-kl.de/volltexte/2005/1883/
Levandovskyy, V.: PLURAL, a non-commutative extension of SINGULAR: past, present and future. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151, pp. 144–157. Springer, Heidelberg (2006)
Levandovskyy, V., Schindelar, K.: Fraction-free algorithm for the computation of diagonal forms matrices over Ore domains using Gröbner bases. J. Symbolic Comput. 47, 1214–1232 (2012)
Levandovskyy, V., Schönemann, H.: PLURAL — a computer algebra system for noncommutative polynomial algebras. In: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pp. 176–183. ACM, New York (2003)
Lezama, O., Gallego, C.: Gröbner bases for ideals of sigma-PBW extensions. Comm. Algebra 39, 50–75 (2011)
Lezama, O., Reyes, A.: Some homological properties of skew PBW extensions, http://arxiv.org/abs/1310.6639
Lobillo, F.J.: Métodos Algebraicos y Efectivos en Grupos Cuánticos, Tesis doctoral, Universidad de Granada (1998)
Lorenz, M.: Gelfand-Kirillov dimension and Poincaré series, Cuadernos de Álgebra 7, Universidad de Granada (1988)
McConnell, J.C., Robson, J.C.: Noncommutative noetherian ring. Wiley Interscience, New York (1988)
McConnell, J.C., Stafford, J.: Gelfand-Kirillov dimension and associated graded modules. J. Algebra 125, 197–214 (1989)
Mora, T.: An introduction to commutative and non-commutative Gröbner bases. Theoret. Comput. Sci. 134, 131–173 (1994)
Mora, T., Robbiano, L.: The Gröbner fan of an ideal. J. Symbolic Comput. 6, 183–208 (1988)
Noro, M., Shimoyama, T., Takeshima, T.: Risa/Asir, an open source general computer algebra system (2012), http://www.math.kobe-u.ac.jp/Asir
Ore, Ø.: Theory of non-commutative polynomials. Ann. Math. 34, 480–508 (1933)
Quadrat, A.: Grade Filtration of Linear Functional Systems. Acta Appl. Math. 127, 27–86 (2013)
Robbiano, L.: On the theory of graded structures. J. Symbolic Comput. 2, 139–186 (1986)
Robertz, D.: Janet Bases and Applications. In: Rosenkranz, M., Wang, D. (eds.) Gröbner Bases in Symbolic Analysis, pp. 139–168. de Gruyter, Berlin (2007), http://wwwb.math.rwth-aachen.de/Janet/janetore.html
Rónyai, L.: Simple algebras are difficult. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 1987, pp. 398–408. ACM (1987)
Saito, M., Sturmfels, B., Takayama, N.: Gröbner deformations of hypergeometric differential equations. Springer, Berlin (2000)
Schindelar, K., Levandovskyy, V.: A Singular 3.1 library with algorithms for Smith and Jacobson normal forms jacobson.lib. (2009), http://www.singular.uni-kl.de
Schreyer, F.: Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrachen Divisionsatz, Diplomatbeit. Universität Hamburg (1980)
Singer, M.F.: Testing reducibility of linear differential operators: A group theoretic perspective. Appl. Algebra Eng. Commun. Comput. 7, 77–104 (1996)
Strenström, B.: Rings of Quotients. Springer, Berlin (1975)
Takayama, N.: kan/sm1, a Gröbner engine for the ring of differential and difference operators (2003), http://www.math.kobe-u.ac.jp/KAN/index.html
Tsai, H., Leykin, A.: D-modules package for Macaulay 2 – algorithms for D–modules (2006), http://people.math.gatech.edu/~aleykin3/Dmodules/
Van der Put, M., Singer, M.F.: Galois Theory of Linear Differential Equations. Springer, New York (2003)
Van Hoeij, M.: Factorization of Differential Operators with Rational Functions Coefficients. J. Symbolic Comput. 24, 537–561 (1997)
Weispfenning, V.: Constructing universal Gröbner bases. In: Huguet, L., Poli, A. (eds.) Proceedings of AAECC 5. LNCS, vol. 356, pp. 408–417. Springer, Heidelberg (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gómez-Torrecillas, J. (2014). Basic Module Theory over Non-commutative Rings with Computational Aspects of Operator Algebras. In: Barkatou, M., Cluzeau, T., Regensburger, G., Rosenkranz, M. (eds) Algebraic and Algorithmic Aspects of Differential and Integral Operators. AADIOS 2012. Lecture Notes in Computer Science, vol 8372. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54479-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-54479-8_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54478-1
Online ISBN: 978-3-642-54479-8
eBook Packages: Computer ScienceComputer Science (R0)