Nothing Special   »   [go: up one dir, main page]

Skip to main content

Connected Greedy Colourings

  • Conference paper
LATIN 2014: Theoretical Informatics (LATIN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8392))

Included in the following conference series:

Abstract

A connected vertex ordering of a graph G is an ordering v 1 < v 2 < ⋯ < v n of V(G) such that v i has at least one neighbour in {v 1, …, v i − 1}, for every i ∈ {2, …, n}. A connected greedy colouring is a colouring obtained by the greedy algorithm applied to a connected vertex ordering. In this paper we study the parameter Γ c (G), which is the maximum k such that G admits a connected greedy k-colouring, and χ c (G), which is the minimum k such that a connected greedy k-colouring of G exists. We prove that computing Γ c (G) is NP-hard for chordal graphs and complements of bipartite graphs. We also prove that if G is bipartite, Γ c (G) = 2. Concerning χ c (G), we first show that there is a k-chromatic graph G k with χ c (G k ) > χ(G k ), for every k ≥ 3. We then prove that for every graph G, χ c (G) ≤ χ(G) + 1. Finally, we prove that deciding if χ c (G) = χ(G), given a graph G, is a NP-hard problem.

Work partially supported by CAPES/Brazil, CNPq/Brazil, FAPERJ/Brazil and FUNCAP/Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beyer, T., Hedetniemi, S.M., Hedetniemi, S.T.: A linear algorithm for the grundy number of a tree. In: Proceedings of the Thirteenth Southeastern Conference on Combinatorics, Graph Theory and Computing. Utilitas Mathematica, pp. 351–363 (1982)

    Google Scholar 

  2. Chow, F., Hennessy, J.: Register allocation by priority-based coloring. ACM SIGPLAN Notices 19, 222–232 (1984)

    Article  Google Scholar 

  3. Chow, F., Hennessy, J.: The priority-based coloring approach to register allocation. ACM Transactions on Programming Languages and Systems 12, 501–536 (1990)

    Article  Google Scholar 

  4. Dailey, D.P.: Uniqueness of colorability and colorability of planar 4-regular graphs are np-complete. Discrete Mathematics 30(3), 289–293 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gamst, A.: Some lower bounds for the class of frequency assignment problems. IEEE Transactions on Vehicular Technology 35(8–14) (1986)

    Google Scholar 

  6. Havet, F., Sampaio, L.: On the grundy and b-chromatic numbers of a graph. Algorithmica 65(4), 885–899 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Holyer, I.: The NP-completeness of edge-coloring. SIAM Journal on Computing 10(4), 718–720 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Håstad, J.: Clique is hard to approximate within n 1 − ε. In: Acta Mathematica, pp. 627–636 (1996)

    Google Scholar 

  9. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston (1996)

    MATH  Google Scholar 

  10. Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM Journal on Discrete Mathematics 10, 529–550 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Werra, D.: An introduction to timetabling. European Journal of Operations Research 19, 151–161 (1985)

    Article  MATH  Google Scholar 

  12. Zaker, M.: The grundy chromatic number of the complement of bipartite graphs. Australasian Journal of Combinatorics 31, 325–329 (2005)

    MATH  MathSciNet  Google Scholar 

  13. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory of Computing 3(6) (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Benevides, F. et al. (2014). Connected Greedy Colourings. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54423-1_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54422-4

  • Online ISBN: 978-3-642-54423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics