Nothing Special   »   [go: up one dir, main page]

Skip to main content

Non-regular Surface Approximation

  • Conference paper
Mathematical Methods for Curves and Surfaces (MMCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8177))

Abstract

The aim of the paper is to provide a method for approximating non regular surfaces from a set of scattered data in a faithful way. The method we propose is effective and particularly well-suited for recovering geophysical surfaces with faults or drainage patterns. Some real examples will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aràndiga, F., Cohen, A., Donat, R., Dyn, N., Matei, B.: Approximation of piecewise smooth functions and images by edge-adapted (ENO-EA) nonlinear multiresolution techniques. Appl. Comput. Harmon. Anal. 24(2), 225–250 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Archibald, R., Gelb, A., Yoon, J.: Polynomial fitting for edge detection in irregularly sampled signals and images. SIAM J. Numer. Anal. 43(1), 259–279 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bozzini, M., Lenarduzzi, L., Schaback, R.: Adaptive Interpolation by Scaled Multiquadrics. Adv. Comput. Math. 16, 375–387 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bozzini, M., Rossini, M.: Detection of faults and gradient faults from scattered data with noise. In: Vigo-Aguiar, J., Alonso, P., Oharu, S., Venturino, E., Wade, B. (eds.) Proceedings of the 2009 International Conference on Computational and Mathematical Methods in Science and Engineering, pp. 189–200 (2009)

    Google Scholar 

  5. Cates, D., Gelb, A.: Detecting derivative discontinuity locations in piecewise continuous functions from Fourier spectral data. Numer. Algorithms 46(1), 59–84 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Crampton, A., Mason, J.C.: Detecting and approximating fault lines from randomly scattered data. Numer. Algorithms 39(1-3), 115–130 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fua, P.: Fast, Accurate and Consistent Modeling of Drainage and Surrounding Terrain. Int. J. of Computer Vision 26, 215–234 (1998)

    Article  Google Scholar 

  8. Gout, C., Le Guyader, C., Romani, L., Saint-Guirons, A.G.: Approximation of Surfaces with Fault(s) and/or Rapidly Varying Data, Using a Segmentation Process, D m -Splines and the Finite Element Method. Numer. Alg. 48, 67–92 (2008)

    Article  MATH  Google Scholar 

  9. Gutzmer, T., Iske, A.: Detection of Discontinuities in Scattered Data Approximation. Numerical Algorithms 16, 155–170 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hand, D.J.: Discrimination and Classification. Wiley (1981)

    Google Scholar 

  11. Lazzaro, D., Montefusco, L.: Radial Basis Functions for the Multivariate Interpolation of Large Scattered Data Sets. J. Comput. Appl. Maths. 140, 521–536 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. López de Silanes, M.C., Parra, M.C., Torrens, J.J.: Vertical and oblique fault detection in explicit surfaces. J. Comput. Appl. Math. 140, 559–585 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. López de Silanes, M.C., Parra, M.C., Torrens, J.J.: On a new characterization of finite jump discontinuities and its application to vertical fault detection. Math. Comput. Simulation 77(2-3), 247–256 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Parra, M.C., López de Silanes, M.C.: Some results obtained in the study of fault detection from scattered data. In: Seventh Zaragoza-Pau Conference on Applied Mathematics and Statistics, Spanish, Jaca. (2001); Monogr. Semin. Mat. García de Galdeano, vol. 27, pp. 483–490. Univ. Zaragoza, Zaragoza (2003)

    Google Scholar 

  15. Rossini, M.: Irregularity Detection from Noisy Data in One and Two Dimension. Numer. Algor. 16, 283–301 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rossini, M.: 2D- Discontinuity Detection from Scattered Data. Computing 61, 215–234 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rossini, M.: Detecting discontinuities in two dimensional signal sampled on a grid. Journal of Numerical Analysis, Industrial and Applied Mathematics 4(3-4), 203–215 (2009)

    MathSciNet  Google Scholar 

  18. Solé, A., Caselles, V., Sapiro, G., Aràndiga, F.: Morse Description and Geometric Encoding of Digital Elevation Maps. IEEE Trans. on Image Processing 13, 1245–1262 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bozzini, M., Lenarduzzi, L., Rossini, M. (2014). Non-regular Surface Approximation. In: Floater, M., Lyche, T., Mazure, ML., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2012. Lecture Notes in Computer Science, vol 8177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54382-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54382-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54381-4

  • Online ISBN: 978-3-642-54382-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics