Abstract
The aim of the paper is to provide a method for approximating non regular surfaces from a set of scattered data in a faithful way. The method we propose is effective and particularly well-suited for recovering geophysical surfaces with faults or drainage patterns. Some real examples will be presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aràndiga, F., Cohen, A., Donat, R., Dyn, N., Matei, B.: Approximation of piecewise smooth functions and images by edge-adapted (ENO-EA) nonlinear multiresolution techniques. Appl. Comput. Harmon. Anal. 24(2), 225–250 (2008)
Archibald, R., Gelb, A., Yoon, J.: Polynomial fitting for edge detection in irregularly sampled signals and images. SIAM J. Numer. Anal. 43(1), 259–279 (2005)
Bozzini, M., Lenarduzzi, L., Schaback, R.: Adaptive Interpolation by Scaled Multiquadrics. Adv. Comput. Math. 16, 375–387 (2002)
Bozzini, M., Rossini, M.: Detection of faults and gradient faults from scattered data with noise. In: Vigo-Aguiar, J., Alonso, P., Oharu, S., Venturino, E., Wade, B. (eds.) Proceedings of the 2009 International Conference on Computational and Mathematical Methods in Science and Engineering, pp. 189–200 (2009)
Cates, D., Gelb, A.: Detecting derivative discontinuity locations in piecewise continuous functions from Fourier spectral data. Numer. Algorithms 46(1), 59–84 (2007)
Crampton, A., Mason, J.C.: Detecting and approximating fault lines from randomly scattered data. Numer. Algorithms 39(1-3), 115–130 (2005)
Fua, P.: Fast, Accurate and Consistent Modeling of Drainage and Surrounding Terrain. Int. J. of Computer Vision 26, 215–234 (1998)
Gout, C., Le Guyader, C., Romani, L., Saint-Guirons, A.G.: Approximation of Surfaces with Fault(s) and/or Rapidly Varying Data, Using a Segmentation Process, D m -Splines and the Finite Element Method. Numer. Alg. 48, 67–92 (2008)
Gutzmer, T., Iske, A.: Detection of Discontinuities in Scattered Data Approximation. Numerical Algorithms 16, 155–170 (1997)
Hand, D.J.: Discrimination and Classification. Wiley (1981)
Lazzaro, D., Montefusco, L.: Radial Basis Functions for the Multivariate Interpolation of Large Scattered Data Sets. J. Comput. Appl. Maths. 140, 521–536 (2002)
López de Silanes, M.C., Parra, M.C., Torrens, J.J.: Vertical and oblique fault detection in explicit surfaces. J. Comput. Appl. Math. 140, 559–585 (2002)
López de Silanes, M.C., Parra, M.C., Torrens, J.J.: On a new characterization of finite jump discontinuities and its application to vertical fault detection. Math. Comput. Simulation 77(2-3), 247–256 (2008)
Parra, M.C., López de Silanes, M.C.: Some results obtained in the study of fault detection from scattered data. In: Seventh Zaragoza-Pau Conference on Applied Mathematics and Statistics, Spanish, Jaca. (2001); Monogr. Semin. Mat. García de Galdeano, vol. 27, pp. 483–490. Univ. Zaragoza, Zaragoza (2003)
Rossini, M.: Irregularity Detection from Noisy Data in One and Two Dimension. Numer. Algor. 16, 283–301 (1997)
Rossini, M.: 2D- Discontinuity Detection from Scattered Data. Computing 61, 215–234 (1998)
Rossini, M.: Detecting discontinuities in two dimensional signal sampled on a grid. Journal of Numerical Analysis, Industrial and Applied Mathematics 4(3-4), 203–215 (2009)
Solé, A., Caselles, V., Sapiro, G., Aràndiga, F.: Morse Description and Geometric Encoding of Digital Elevation Maps. IEEE Trans. on Image Processing 13, 1245–1262 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bozzini, M., Lenarduzzi, L., Rossini, M. (2014). Non-regular Surface Approximation. In: Floater, M., Lyche, T., Mazure, ML., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2012. Lecture Notes in Computer Science, vol 8177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54382-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-54382-1_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54381-4
Online ISBN: 978-3-642-54382-1
eBook Packages: Computer ScienceComputer Science (R0)