Nothing Special   »   [go: up one dir, main page]

Skip to main content

Commutator Estimate for Nonlinear Subdivision

  • Conference paper
Mathematical Methods for Curves and Surfaces (MMCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8177))

Abstract

Nonlinear multiscale algorithms often involve nonlinear perturbations of linear coarse-to-fine prediction operators S (also called subdivision operators). In order to control these perturbations, estimates of the “commutator” SF − FS of S with a sufficiently smooth map F are needed. Such estimates in terms of bounds on higher-order differences of the underlying mesh sequences have already appeared in the literature, in particular in connection with manifold-valued multiscale schemes. In this paper we give a compact (and in our opinion technically less tedious) proof of commutator estimates in terms of local best approximation by polynomials instead of bounds on differences covering multivariate S with general dilation matrix M. An application to the analysis of normal multiscale algorithms for surface representation is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary Subdivision. In: Memoirs AMS, vol. 453, Amer. Math. Soc., Providence (1991)

    Google Scholar 

  2. Charina, M., Conti, C.: Polynomial reproduction of multivariate scalar subdivision schemes. J. Comput. Appl. Math. 240, 51–61 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Daubechies, I., Runborg, O., Sweldens, W.: Normal multiresolution approximation of curves. Constr. Approx. 20, 399–463 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Duchamp, T., Xie, G., Yu, T.P.Y.: Single basepoint subdivision schemes for manifold-valued data: time-symmetry without space-symmetry. Found. Comput. Math. (to appear, 2013)

    Google Scholar 

  5. Dyn, N.: Subdivision schemes in CAGD. In: Light, W. (ed.) Advances in Numerical Analysis, vol. 2, pp. 36–104. Oxford Univ. Press, Oxford (1992)

    Google Scholar 

  6. Grohs, P.: Smoothness equivalence properties of univariate subdivision schemes and their projection analogues. Numer. Math. 113, 163–180 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Grohs, P.: A general proximity analysis of nonlinear subdivision schemes. SIAM J. Math. Anal. 42, 729–750 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Guskov, I., Vidimče, K., Sweldens, W., Schröder, P.: Normal meshes. In: Proceedings 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 95–102. ACM Press/Addison-Wesley (2000)

    Google Scholar 

  9. Harizanov, S.: Analysis of nonlinear subdivision and multi-scale transforms. PhD Thesis, Jacobs University Bremen (2011)

    Google Scholar 

  10. Harizanov, S., Oswald, P., Shingel, T.: Normal multi-scale transforms for curves. Found. Comput. Math. 11, 617–656 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Khodakovsky, A., Guskov, I.: Compression of normal meshes. In: Geometric Modeling for Scientific Visualization, pp. 189–206. Springer, Berlin (2004)

    Chapter  Google Scholar 

  12. Latour, V., Müller, N.W.: Stationary subdivision for general scaling matrices. Math. Z 227, 645–661 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Navayazdani, E., Yu, T.P.Y.: On Donoho’s Log-Exp subdivision scheme: choice of retraction and time-symmetry. Multiscale Model. Sim. 9, 1801–1828 (2011)

    Article  MathSciNet  Google Scholar 

  14. Oswald, P.: Normal multi-scale transforms for surfaces. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2011. LNCS, vol. 6920, pp. 527–542. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Oswald, P.: Normal multiscale transforms for surfaces: Shift-invariant topologies (in preparation)

    Google Scholar 

  16. Wallner, J., Navayazdani, E., Grohs, P.: Smoothness properties of Lie group subdivision schemes. Multiscale Model. Sim. 6, 493–505 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Warren, J., Weimer, H.: Subdivision Methods for Geometric Design: A Constructive Approach. Morgan Kaufmann Publ., San Francisco (2002)

    Google Scholar 

  18. Weinmann, A.: Subdivision schemes with general dilation in the geometric and nonlinear setting. J. Approx. Th. 164, 105–137 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Xie, G., Yu, T.P.Y.: Smoothness equivalence properties of general manifold-valued data subdivision schemes. Multiscale Model. Sim. 7, 1073–1100 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oswald, P., Shingel, T. (2014). Commutator Estimate for Nonlinear Subdivision. In: Floater, M., Lyche, T., Mazure, ML., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2012. Lecture Notes in Computer Science, vol 8177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54382-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54382-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54381-4

  • Online ISBN: 978-3-642-54382-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics