Abstract
Nonlinear multiscale algorithms often involve nonlinear perturbations of linear coarse-to-fine prediction operators S (also called subdivision operators). In order to control these perturbations, estimates of the “commutator” SF − FS of S with a sufficiently smooth map F are needed. Such estimates in terms of bounds on higher-order differences of the underlying mesh sequences have already appeared in the literature, in particular in connection with manifold-valued multiscale schemes. In this paper we give a compact (and in our opinion technically less tedious) proof of commutator estimates in terms of local best approximation by polynomials instead of bounds on differences covering multivariate S with general dilation matrix M. An application to the analysis of normal multiscale algorithms for surface representation is outlined.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary Subdivision. In: Memoirs AMS, vol. 453, Amer. Math. Soc., Providence (1991)
Charina, M., Conti, C.: Polynomial reproduction of multivariate scalar subdivision schemes. J. Comput. Appl. Math. 240, 51–61 (2013)
Daubechies, I., Runborg, O., Sweldens, W.: Normal multiresolution approximation of curves. Constr. Approx. 20, 399–463 (2004)
Duchamp, T., Xie, G., Yu, T.P.Y.: Single basepoint subdivision schemes for manifold-valued data: time-symmetry without space-symmetry. Found. Comput. Math. (to appear, 2013)
Dyn, N.: Subdivision schemes in CAGD. In: Light, W. (ed.) Advances in Numerical Analysis, vol. 2, pp. 36–104. Oxford Univ. Press, Oxford (1992)
Grohs, P.: Smoothness equivalence properties of univariate subdivision schemes and their projection analogues. Numer. Math. 113, 163–180 (2009)
Grohs, P.: A general proximity analysis of nonlinear subdivision schemes. SIAM J. Math. Anal. 42, 729–750 (2010)
Guskov, I., Vidimče, K., Sweldens, W., Schröder, P.: Normal meshes. In: Proceedings 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 95–102. ACM Press/Addison-Wesley (2000)
Harizanov, S.: Analysis of nonlinear subdivision and multi-scale transforms. PhD Thesis, Jacobs University Bremen (2011)
Harizanov, S., Oswald, P., Shingel, T.: Normal multi-scale transforms for curves. Found. Comput. Math. 11, 617–656 (2011)
Khodakovsky, A., Guskov, I.: Compression of normal meshes. In: Geometric Modeling for Scientific Visualization, pp. 189–206. Springer, Berlin (2004)
Latour, V., Müller, N.W.: Stationary subdivision for general scaling matrices. Math. Z 227, 645–661 (1998)
Navayazdani, E., Yu, T.P.Y.: On Donoho’s Log-Exp subdivision scheme: choice of retraction and time-symmetry. Multiscale Model. Sim. 9, 1801–1828 (2011)
Oswald, P.: Normal multi-scale transforms for surfaces. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2011. LNCS, vol. 6920, pp. 527–542. Springer, Heidelberg (2012)
Oswald, P.: Normal multiscale transforms for surfaces: Shift-invariant topologies (in preparation)
Wallner, J., Navayazdani, E., Grohs, P.: Smoothness properties of Lie group subdivision schemes. Multiscale Model. Sim. 6, 493–505 (2007)
Warren, J., Weimer, H.: Subdivision Methods for Geometric Design: A Constructive Approach. Morgan Kaufmann Publ., San Francisco (2002)
Weinmann, A.: Subdivision schemes with general dilation in the geometric and nonlinear setting. J. Approx. Th. 164, 105–137 (2012)
Xie, G., Yu, T.P.Y.: Smoothness equivalence properties of general manifold-valued data subdivision schemes. Multiscale Model. Sim. 7, 1073–1100 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Oswald, P., Shingel, T. (2014). Commutator Estimate for Nonlinear Subdivision. In: Floater, M., Lyche, T., Mazure, ML., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2012. Lecture Notes in Computer Science, vol 8177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54382-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-54382-1_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54381-4
Online ISBN: 978-3-642-54382-1
eBook Packages: Computer ScienceComputer Science (R0)