Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8330))

Abstract

In this paper we present a method for fully automatic left atrium segmentation from 3D cardiac magnetic resonance datasets. We propose a machine learning approach using decision forests that requires very few assumptions on the segmentation problem. First, we extract the blood pool using a simple thresholding technique. Then, we learn to separate the left atrium from other structures in the image by using context-rich features applied on images enhanced with a multi-scale vesselness filter and transformed to measure distance to blood pool surface. We present our results on the STACOM LA Segmentation Challenge 2013 validation datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kutra, D., Saalbach, A., Lehmann, H., Groth, A., Dries, S.P.M., Krueger, M.W., Dössel, O., Weese, J.: Automatic multi-model-based segmentation of the left atrium in cardiac MRI scans. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 1–8. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Ecabert, O., Peters, J., Schramm, H., Lorenz, C., von Berg, J., Walker, M.J., Vembar, M., Olszewski, M.E., Subramanyan, K., Lavi, G., Weese, J.: Automatic model-based segmentation of the heart in CT images. IEEE Transactions on Medical Imaging 27(9), 1189–1201 (2008)

    Article  Google Scholar 

  3. Karim, R., Mohiaddin, R., Rueckert, D.: Automatic Segmentation of the Left Atrium. In: Medical Image Under standing and Analysis Conference (2007)

    Google Scholar 

  4. Depa, M., Sabuncu, M.R., Holmvang, G., Nezafat, R., Schmidt, E.J., Golland, P.: Robust Atlas-Based Segmentation of Highly Variable Anatomy: Left Atrium Segmentation. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM 2010. LNCS, vol. 6364, pp. 85–94. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Margeta, J., Geremia, E., Criminisi, A., Ayache, N.: Layered Spatio-temporal Forests for Left Ventricle Segmentation from 4D Cardiac MRI Data. In: Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2011. LNCS, vol. 7085, pp. 109–119. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Lempitsky, V., Verhoek, M., Noble, J., Blake, A.: Random Forest Classification for Automatic Delineation of Myocardium in Real-Time 3D Echocardiography. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 447–456. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Geremia, E., Clatz, O., Menze, B.H., Konukoglu, E., Criminisi, A., Ayache, N.: Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images. NeuroImage 57(2), 378–390 (2011)

    Article  Google Scholar 

  8. Criminisi, A., Shotton, J., Konukoglu, E.: Decision Forests: A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning. Foundations and Trends in Computer Graphics and Vision 7(2-3), 81–227 (2011)

    Article  MATH  Google Scholar 

  9. Tobon-Gomez, C., Peters, J., Weese, J., Pinto, K., Karim, R., Schaeffter, T., Razavi, R., Rhode, K.S.: Left Atrial Segmentation Challenge: a unified benchmarking framework. In: Statistical Atlases and Computational Models of the Heart (2013)

    Google Scholar 

  10. Nyúl, L.G., Udupa, J.K.: On standardizing the MR image intensity scale. Magnetic Resonance in Medicine 42(6), 1072–1081 (1999)

    Article  Google Scholar 

  11. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics C(1), 62–66 (1979)

    MathSciNet  Google Scholar 

  12. Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., Kikinis, R.: 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997. LNCS, vol. 1205, pp. 213–222. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Margeta, J., McLeod, K., Criminisi, A., Ayache, N. (2014). Decision Forests for Segmentation of the Left Atrium from 3D MRI. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2013. Lecture Notes in Computer Science, vol 8330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54268-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54268-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54267-1

  • Online ISBN: 978-3-642-54268-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics