Abstract
In this paper we present a method for fully automatic left atrium segmentation from 3D cardiac magnetic resonance datasets. We propose a machine learning approach using decision forests that requires very few assumptions on the segmentation problem. First, we extract the blood pool using a simple thresholding technique. Then, we learn to separate the left atrium from other structures in the image by using context-rich features applied on images enhanced with a multi-scale vesselness filter and transformed to measure distance to blood pool surface. We present our results on the STACOM LA Segmentation Challenge 2013 validation datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kutra, D., Saalbach, A., Lehmann, H., Groth, A., Dries, S.P.M., Krueger, M.W., Dössel, O., Weese, J.: Automatic multi-model-based segmentation of the left atrium in cardiac MRI scans. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 1–8. Springer, Heidelberg (2012)
Ecabert, O., Peters, J., Schramm, H., Lorenz, C., von Berg, J., Walker, M.J., Vembar, M., Olszewski, M.E., Subramanyan, K., Lavi, G., Weese, J.: Automatic model-based segmentation of the heart in CT images. IEEE Transactions on Medical Imaging 27(9), 1189–1201 (2008)
Karim, R., Mohiaddin, R., Rueckert, D.: Automatic Segmentation of the Left Atrium. In: Medical Image Under standing and Analysis Conference (2007)
Depa, M., Sabuncu, M.R., Holmvang, G., Nezafat, R., Schmidt, E.J., Golland, P.: Robust Atlas-Based Segmentation of Highly Variable Anatomy: Left Atrium Segmentation. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM 2010. LNCS, vol. 6364, pp. 85–94. Springer, Heidelberg (2010)
Margeta, J., Geremia, E., Criminisi, A., Ayache, N.: Layered Spatio-temporal Forests for Left Ventricle Segmentation from 4D Cardiac MRI Data. In: Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2011. LNCS, vol. 7085, pp. 109–119. Springer, Heidelberg (2012)
Lempitsky, V., Verhoek, M., Noble, J., Blake, A.: Random Forest Classification for Automatic Delineation of Myocardium in Real-Time 3D Echocardiography. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 447–456. Springer, Heidelberg (2009)
Geremia, E., Clatz, O., Menze, B.H., Konukoglu, E., Criminisi, A., Ayache, N.: Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images. NeuroImage 57(2), 378–390 (2011)
Criminisi, A., Shotton, J., Konukoglu, E.: Decision Forests: A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning. Foundations and Trends in Computer Graphics and Vision 7(2-3), 81–227 (2011)
Tobon-Gomez, C., Peters, J., Weese, J., Pinto, K., Karim, R., Schaeffter, T., Razavi, R., Rhode, K.S.: Left Atrial Segmentation Challenge: a unified benchmarking framework. In: Statistical Atlases and Computational Models of the Heart (2013)
Nyúl, L.G., Udupa, J.K.: On standardizing the MR image intensity scale. Magnetic Resonance in Medicine 42(6), 1072–1081 (1999)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics C(1), 62–66 (1979)
Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., Kikinis, R.: 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997. LNCS, vol. 1205, pp. 213–222. Springer, Heidelberg (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Margeta, J., McLeod, K., Criminisi, A., Ayache, N. (2014). Decision Forests for Segmentation of the Left Atrium from 3D MRI. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2013. Lecture Notes in Computer Science, vol 8330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54268-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-54268-8_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54267-1
Online ISBN: 978-3-642-54268-8
eBook Packages: Computer ScienceComputer Science (R0)