Abstract
Two-player games on graphs provide the theoretical framework for many important problems such as reactive synthesis. While the traditional study of two-player zero-sum games has been extended to multi-player games with several notions of equilibria, they are decidable only for perfect-information games, whereas several applications require imperfect-information games.
In this paper we propose a new notion of equilibria, called doomsday equilibria, which is a strategy profile such that all players satisfy their own objective, and if any coalition of players deviates and violates even one of the players objective, then the objective of every player is violated.
We present algorithms and complexity results for deciding the existence of doomsday equilibria for various classes of ω-regular objectives, both for imperfect-information games, and for perfect-information games.We provide optimal complexity bounds for imperfect-information games, and in most cases for perfect-information games.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49, 672–713 (2002)
Alur, R., La Torre, S.: Deterministic generators and games for LTL fragments. TOCL 5 (2004)
Alur, R., La Torre, S., Madhusudan, P.: Playing games with boxes and diamonds. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 128–143. Springer, Heidelberg (2003)
Berwanger, D., Doyen, L.: On the power of imperfect information. In: FSTTCS, pp. 73–82 (2008)
Büchi, J.R., Landweber, L.H.: Definability in the monadic second-order theory of successor. J. Symb. Log. 34(2), 166–170 (1969)
Cai, Y., Zhang, T., Luo, H.: An improved lower bound for the complementation of rabin automata. In: LICS, pp. 167–176. IEEE Computer Society (2009)
Chadha, R., Kremer, S., Scedrov, A.: Formal analysis of multiparty contract signing. J. Autom. Reasoning 36(1-2), 39–83 (2006)
Chatterjee, K., Doyen, L., Filiot, E., Raskin, J.-F.: Doomsday equilibria for omega-regular games. CoRR, abs/1311.3238 (2013)
Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular games with imperfect information. LMCS 3(3) (2007)
Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Games with secure equilibria. Theor. Comput. Sci. 365(1-2), 67–82 (2006)
Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Inf. Comput. 208(6), 677–693 (2010)
Chatterjee, K., Henzinger, T.A., Piterman, N.: Generalized parity games. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 153–167. Springer, Heidelberg (2007)
Da Costa Lopes, A., Laroussinie, F., Markey, N.: ATL with strategy contexts: Expressiveness and model checking. In: FSTTCS. LIPIcs, vol. 8, pp. 120–132 (2010)
Emerson, E.A., Jutla, C.: Tree automata, mu-calculus and determinacy. In: FOCS, pp. 368–377. IEEE Comp. Soc. (1991)
Emerson, E.A., Lei, C.-L.: Modalities for model checking: Branching time strikes back. In: POPL, pp. 84–96 (1985)
Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer, Heidelberg (2010)
Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games, vol. 2500. Springer (2002)
Immerman, N.: Number of quantifiers is better than number of tape cells. Journal of Computer and System Sciences 22, 384–406 (1981)
Jamroga, W., Mauw, S., Melissen, M.: Fairness in non-repudiation protocols. In: Meadows, C., Fernandez-Gago, C. (eds.) STM 2011. LNCS, vol. 7170, pp. 122–139. Springer, Heidelberg (2012)
Kremer, S., Raskin, J.-F.: A game-based verification of non-repudiation and fair exchange protocols. Journal of Computer Security 11(3), 399–430 (2003)
Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS (2005)
Martin, D.: Borel determinacy. Annals of Mathematics 102, 363–371 (1975)
Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: What makes Atl* decidable? A decidable fragment of strategy logic. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 193–208. Springer, Heidelberg (2012)
Mogavero, F., Murano, A., Vardi, M.Y.: Reasoning about strategies. In: Proc. of FSTTCS. LIPIcs, vol. 8, pp. 133–144, Schloss Dagstuhl - LZfI (2010)
Nash, J.F.: Equilibrium points in n-person games. PNAS 36, 48–49 (1950)
Piterman, N.: From nondeterministic Büchi and streett automata to deterministic parity automata. Logical Methods in Computer Science 3(3) (2007)
Piterman, N., Pnueli, A.: Faster solutions of rabin and streett games. In: LICS, pp. 275–284 (2006)
Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190. ACM Press (1989)
Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc. 141, 1–35 (1969)
Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes. SIAM Journal on Control and Optimization 25(1), 206–230 (1987)
Shapley, L.S.: Stochastic games. PNAS 39, 1095–1100 (1953)
Ummels, M., Wojtczak, D.: The complexity of nash equilibria in stochastic multiplayer games. Logical Methods in Computer Science 7(3) (2011)
Wang, F., Huang, C.-H., Yu, F.: A temporal logic for the interaction of strategies. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 466–481. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chatterjee, K., Doyen, L., Filiot, E., Raskin, JF. (2014). Doomsday Equilibria for Omega-Regular Games. In: McMillan, K.L., Rival, X. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2014. Lecture Notes in Computer Science, vol 8318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54013-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-54013-4_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54012-7
Online ISBN: 978-3-642-54013-4
eBook Packages: Computer ScienceComputer Science (R0)