Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel Multi-class Brain-Computer Interface (BCI) Paradigm Based on Motor Imagery Sequential Coding (MISC) Protocol

  • Conference paper
Intelligence Science and Big Data Engineering (IScIDE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8261))

  • 2485 Accesses

Abstract

In this study, we present a novel multi-class BCI paradigm based on motor imagery sequential coding (MISC) protocol, which can generate multiple commands just by two kinds of motor imagery (MI) tasks. In the MISC protocol, each mental task was divided into several continuous epochs with the same duration. During each epoch, one of the two MI tasks was executed. With this protocol, multiple mental states can be coded by the two MI tasks. Additionally, the difficulty of classifier design was also reduced as only two MI tasks were needed to be classified. Three subjects participated in our experiments, and achieved an average accuracy of 85.7%, with the ITR of 16.5 bits/min. The results confirmed that the MISC protocol can generate more commands in BCI system with the equal number of MI tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dornhege, G., Milln, J.R., Hinterberger, T., McFarland, D.J., Mller, K.R.: Toward Brain Computer Interfacing. The MIT Press, London (2007)

    Google Scholar 

  2. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-Computer Interfaces for Communication and Control. Clin. Neurophysiol. 113, 767–791 (2002)

    Article  Google Scholar 

  3. Pfurtscheller, G., Neuper, C.: Motor Imagery Activates Primary Sensorimotor Area in Humans. Neuroscience Letters 239, 65–68 (1997)

    Article  Google Scholar 

  4. Piccionem, F., Giorgi, F., Tonin, P.: P300-based Brain Computer Interface: Reliability and Performance in Healthy and Paralysed Participants. Clin. Neurophysiol. 117, 531–537 (2006)

    Article  Google Scholar 

  5. Lee, P.J., Hsieh, J.C., Wu, C.H.: Brain Computer Interface Using Flash Onset and Offset Visual Evoked Potentials. Clin. Neurophysiol. 119, 605–616 (2008)

    Article  Google Scholar 

  6. Wolpaw, J.R., McFarland, D.J.: Control of a Two-dimensional Movement Signal by a Noninvasive Brain-Computer Interface in Humans. Proceedings of the National Academy of Sciences of United States of America (PNAS) 101, 17849–17854 (2004)

    Article  Google Scholar 

  7. Galn, F., Nuttin, M., Lew, E., Ferrez, P.W., Vanacker, G., Philips, J., Milln, J.R.: A Brain-Actuated Wheelchair: Asynchronous and Non-invasive Brain-Computer Interfaces for Continuous Control of Robots. Clin. Neurophysiol. 119, 2159–2169 (2008)

    Article  Google Scholar 

  8. Mller-Putz, G.R., Scherer, R., Pfurtscheller, G., Rupp, R.: EEG-based Neuroprosthesis Control: Step towards Clinical Practices. Neuroscience Letters 382, 169–174 (2005)

    Article  Google Scholar 

  9. Lemm, S., Blankertz, B., Curio, G., Mller, K.R.: Spatio-spectral Filters for Improving the Classification of Single Trial EEG. IEEE Trans. Biomed. Eng. 52, 1541–1548 (2005)

    Article  Google Scholar 

  10. Gouy-Pailler, C., Congedo, M., Brunner, C., Jutten, C., Pfurtscheller, G.: Non-stationary Brain Source Separation for Multi-class Motor Imagery. IEEE Trans. Biomed. Eng. 57, 469–478 (2010)

    Article  Google Scholar 

  11. Dornhege, G., Blankertz, B., Curio, G., Mller, K.R.: Boosting Bit Rates in Noninvasive EEG Single-Trial Classifications by Feature Combination and Multiclass Paradigms. IEEE Trans. Biomed. Eng. 51, 993–1002 (2004)

    Article  Google Scholar 

  12. Grosses-Wentrup, M., Buss, M.: Multiclass Common Spatial Patterns and Information Theoretic Feature Extraction. IEEE Trans. Biomed. Eng. 55, 1991–2000 (2008)

    Article  Google Scholar 

  13. Brunner, C., Naeem, M., Leeb, R., Graimann, B., Pfurtscheller, G.: Spatial Filtering and Selection of Optimized Components in Four Class Motor Imagery EEG Data Using Independent Components Analysis. Pattern Recognition Letters 28, 957–964 (2007)

    Article  Google Scholar 

  14. Obermaier, B.C., Neuper, C., Pfurtscheller, G.: Information Transfer Rate in Five-Classes Brain Computer Interface. IEEE Trans. Neural Syst. Rehabil. Eng. 9, 283–288 (2001)

    Article  Google Scholar 

  15. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Mller, K.R.: Optimizing Spatial Filters for Robust EEG Single-Trial Analysis. IEEE Signal Processing Magazine 25, 41–56 (2008)

    Article  Google Scholar 

  16. Lotte, F., Congedo, M., Lcuyer, A., Lamarche, F., Arnaldi, B.: A Review of Classification Algorithms for EEG-Based Brain-Computer Interfaces. J. Neural Eng. 4, R1–R3 (2007)

    Google Scholar 

  17. Townsend, G., Graimann, B., Pfurtscheller, G.: Continuous EEG Classification During Motor Imagery-Simulation of an Asynchronous BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 258–255 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, J., Yin, E., Yu, Y., Tang, J., Zhou, Z., Hu, D. (2013). A Novel Multi-class Brain-Computer Interface (BCI) Paradigm Based on Motor Imagery Sequential Coding (MISC) Protocol. In: Sun, C., Fang, F., Zhou, ZH., Yang, W., Liu, ZY. (eds) Intelligence Science and Big Data Engineering. IScIDE 2013. Lecture Notes in Computer Science, vol 8261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42057-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42057-3_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42056-6

  • Online ISBN: 978-3-642-42057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics