Nothing Special   »   [go: up one dir, main page]

Skip to main content

MODIS Satellite Data Coupled with a Vegetation Process Model for Mapping Maize Yield in the Northeast China

  • Conference paper
Geo-Informatics in Resource Management and Sustainable Ecosystem (GRMSE 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 399))

  • 2901 Accesses

Abstract

In this study, the regionalestimation ofmaize yield was reported with integrating a process-based mechanism model and MODIS remote sensing data. AC4 plant photosynthetic pathway mode was developed and to substitute for the C3 plant photosynthetic pathway in the remote-sensing-photosynthesis -yield estimation for crops (RS-P-YEC) model, and the Harvest Index (HI) derived from the ratio of grain to stalk yield was adopted in the developed model. We performed maize yield simulation by using the developed model in the Northeast China (NEC) region from 2007-2009. The selected countyleveldata at from the NEC region was validatedwith the MODIS-simulated results. We found that that the correlation coefficientbetween the simulated yield and the statistics yield is high (R2=0.637, n=69),and the spatial pattern of MODIS-simulated yield was agree with the statisticaldistribution in the NEC. It indicatedthe improved model has ability to estimateC4 crops in large area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moulin, S., Bondeau, A., Delecolle, R.: Combining agricultural crop models and satellite observations: From field to regional scales. Int. J. Remote Sens. 19, 1021–1036 (1998)

    Article  Google Scholar 

  2. Basso, B., Ritchie, J.T., Pierce, F.J., Braga, R.P., Jones, J.W.: Spatial validation of crop models for precision agriculture. Agr. Syst. 68, 97–112 (2001)

    Article  Google Scholar 

  3. Liu, J., Chen, J.M., Cihlar, J.: A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sensing of Environ. 62(2), 158–175 (1997)

    Article  Google Scholar 

  4. Fraisse, C.W., Sudduth, K.A., Kitchen, N.R.: Calibration of the CERES-Maize model for simulating site-specific crop development and yield on claypan soils. Appl. Engin. Agricul. 17(4), 547–556 (2001)

    Article  Google Scholar 

  5. Lobell, D.B., Asner, G.P., Ortiz-Monasterio, J.I.: Remote sensing of regional crop production in the Yaqui Valley, Mexico: estimates and uncertainties. Agricul. Ecosys. Environ. 94(2), 205–220 (2003)

    Article  Google Scholar 

  6. Reynolds, C.A., Yitayew, M., Slack, D.C.: Estimating crop yields and production by integrating the FAO Crop Specific Water Balance model with real-time satellite data and ground-based ancillary data. Int. J. Remote Sens. 21(18), 3487–3508 (2000)

    Article  Google Scholar 

  7. Shanahan, J.F., Schepers, J.S., Francis, D.D.: Use of remote-sensing imagery to estimate corn grain yield. Agron. Journ. 93(3), 583–589 (2001)

    Article  Google Scholar 

  8. Baez-Gonzalez, A.D., Kiniry, J.R., Maas, S.J.: Large-area maize yield forecasting using leaf area index based yield model. Agron. Journ. 97(2), 418–425 (2005)

    Article  Google Scholar 

  9. Prasad, A.K., Chai, L., Singh, R.P.: Crop yield estimation model for Iowa using remote sensing and surface parameters. Inter. J. App. Ear. Obser. Geoin. 8(1), 26–33 (2006)

    Article  Google Scholar 

  10. Bastiaanssen, W.G.M., Ali, S.: A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agricul. Ecosys. Environ. 94(3), 321–340 (2003)

    Article  Google Scholar 

  11. Liu, J., Pattey, E., Miller, J.R.: Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model. Remot. Sens. Envir. 114(6), 1167–1177 (2010)

    Article  Google Scholar 

  12. Turner, D.P., Gower, S.T., Cohen, W.B.: Effects of spatial variability in light use efficiency on satellite-based NPP monitoring. Remot. Sens. Envir. 80(3), 397–405 (2002)

    Article  Google Scholar 

  13. Gower, S.T., Kucharik, C.J., Norman, J.M.: Direct and Indirect Estimation of Leaf Area Index, fAPAR, and Net Primary Production of Terrestrial Ecosystems. Remot. Sens. Envir. 70(1), 29–51 (1999)

    Article  Google Scholar 

  14. Chen, J., Liu, J., Cihlar, J.: Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol. Model. 124(2), 99–119 (1999)

    Article  Google Scholar 

  15. Ma, Y.P., Wang, S.L., Zhang, L.: Monitoring winter wheat growth in North China by combining a crop model and remote sensing data. Inter. J. App. Ear. Obser. Geoin. 10(4), 426–437 (2008)

    Article  Google Scholar 

  16. Wang, P.J., Xie, D.H., Zhang, J.H.: Application of BEPS model in estimating winter wheat yield in North China Plain. Tran. CSAE 25(10), 148–153 (2009)

    Google Scholar 

  17. Wang, P.J., Sun, R., Zhang, J.H.: Yield estimation of winter wheat in the North China Plain using the remote-sensing–photosynthesis–yield estimation for crops (RS–P–YEC) model. Int. J. Remote Sens. 32(21), 6335–6348 (2011)

    Article  Google Scholar 

  18. Farquhar, G.D., Caemmerer, S., Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149(1), 78–90 (1980)

    Article  Google Scholar 

  19. Zhang, F.M., Ju, W.M., Chen, J.M.: Characteristics of terrestrial ecosystem primary productivity in East Asia based on remote sensing and process-based model. Chin. J. Appl. Ecol. 23(2), 307–318 (2012)

    Google Scholar 

  20. Leakey, A.D.B., Uribelarrea, M., Ainsworth, E.A.: Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Phy. 140(2), 779–790 (2006)

    Article  Google Scholar 

  21. Huang, H.F.: The study on Theory and Simulation of the Interactions of Soil, Vegetation and Atmosphere. Metereological Press, Beijing (1997)

    Google Scholar 

  22. Norman, J.M.: Simulation of microclimates. In: Hatfield, J.L., Thomason, I.J. (eds.) Biometeorology in Integrated Pest Management, pp. 65–99. Academic Press, New York (1982)

    Chapter  Google Scholar 

  23. Schlesinger, W.H.: Biogeochemistry: an analysis of global change. Academic press (1997)

    Google Scholar 

  24. Chinease Climate Data Information, http://cdc.cma.gov.cn

  25. MODIS Data Information, http://reverb.echo.nasa.gov/reverb/

  26. Zhang, F.C., Zhu, Z.H.: Harvest index for various crops in China. Sci. Agricul. Sin. 23(2), 83–87 (1990)

    MathSciNet  Google Scholar 

  27. Feng, X., Liu, G., Chen, J.M.: Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing. J. Environ. Manag. 85(3), 563–573 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, J., Yao, F. (2013). MODIS Satellite Data Coupled with a Vegetation Process Model for Mapping Maize Yield in the Northeast China. In: Bian, F., Xie, Y., Cui, X., Zeng, Y. (eds) Geo-Informatics in Resource Management and Sustainable Ecosystem. GRMSE 2013. Communications in Computer and Information Science, vol 399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41908-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41908-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41907-2

  • Online ISBN: 978-3-642-41908-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics