Abstract
Although the general relevance of Testor Theory as the theoretical ground for useful feature selection procedures is well known, there are no practical means, nor any standard methodologies, for assessing the behavior of a testor-finding algorithm when faced with specific circumstances. In this work, we present a practical framework, with proven theoretical foundation, for assessing the behavior of both deterministic and meta-heuristic testor-finding algorithms when faced with specific phenomena.
This research was supported by Collaboration Grants from Universidad San Francisco de Quito, Ecuador. The third author is also grateful for the finantial support by Instituto Politécnico Nacional and CONACyT, México, particularly through project SIP-20130932
Chapter PDF
Similar content being viewed by others
References
Alba-Cabrera, E., Santana, R., Ochoa-Rodriguez, A., Lazo-Cortes, M.: Finding typical testors by using an evolutionary strategy. In: Proceedings of the V Ibero American Symposium on Pattern Recognition, pp. 267–278 (2000)
Alba, E., Guilcapi, D., Ibarra, J.: New strategies for evaluating the performance of typical testor algorithms. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 813–820. Springer, Heidelberg (2012)
Diaz-Sanchez, G., Piza-Davila, I., Sanchez-Diaz, G., Mora-Gonzalez, M., Reyes-Cardenas, O., Cardenas-Tristan, A., Aguirre-Salado, C.: Typical Testors Generation Based on an Evolutionary Algorithm. In: Alagar, V.S., Nivat, M. (eds.) AMAST 1995. LNCS, vol. 936, pp. 58–65. Springer, Heidelberg (1995)
Lazo-Cortes, M., Ruiz-Shulcloper, J.: Determining the feature relevance for non classically described objects and a new algorithm to compute typical fuzzy testors. Pattern Recognition Letters 16, 1259–1265 (1995)
Lazo-Cortes, M., Ruiz-Shulcloper, J., Alba-Cabrera, E.: An overview of the evolution of the concept of testor. Pattern Recognition 34(4), 753–762 (2001)
Li, F., Zhu, Q.: Document clustering in research literature based on NMF and testor theory. Journal of Software 6(1), 78–82 (2011)
Lias-Rodríguez, A., Pons-Porrata, A.: BR: A New Method for Computing All Typical Testors. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 433–440. Springer, Heidelberg (2009)
Ortiz-Posadas, M., Martinez-Trinidad, F., Ruiz-Shulcloper, J.: A new approach to diferential diagnosis of diseases. International Journal of Biomedical Computing 40(3), 179–185 (2001)
Pons-Porrata, A., Ruiz-Shulcloper, J., Berlanga-Llavori, R.: A method for the automatic summarization of topic-based clusters of documents. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 596–603. Springer, Heidelberg (2003)
Pons-Porrata, A., Gil-García, R., Berlanga-Llavori, R.: Using Typical Testors for Feature Selection in Text Categorization. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 643–652. Springer, Heidelberg (2007)
Ruiz-Shulcloper, J., Bravo, M., Aguila, F.: Algoritmos BT y TB para el cálculo de todos los tests típicos. Revista Ciencias Matemáticas 6(2) (1982)
Sanchez-Diaz, G., Lazo-Cortes, M., Piza-Davila, I.: A fast implementation for the typical testor property identication based on an accumulative binary tuple. International Journal of Computational Intelligence Systems 5(6) (2012)
Santiesteban-Alganza, Y., Pons-Porrata, A.: LEX: A new algorithm for calculating typical testors. Revista Ciencias Matematicas 21(1), 85–95 (2003)
Vázquez, R., Godoy-Calderon, S.: Using testor theory to reduce the dimension of neural network models. Special Issue in Neural Networks and Associative Memories 28, 93–103 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alba-Cabrera, E., Ibarra-Fiallo, J., Godoy-Calderon, S. (2013). A Theoretical and Practical Framework for Assessing the Computational Behavior of Typical Testor-Finding Algorithms. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2013. Lecture Notes in Computer Science, vol 8258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41822-8_44
Download citation
DOI: https://doi.org/10.1007/978-3-642-41822-8_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41821-1
Online ISBN: 978-3-642-41822-8
eBook Packages: Computer ScienceComputer Science (R0)