Abstract
It is given an short overview of some recent results in the theory of non-additive measures and corresponding integrals. It is presented the universal integral, which include among others, Lebesgue, Choquet, Sugeno, pseudo–additive, Shilkret integrals. Related pseudo-integral a generalization of L p space is introduced. Many useful applications illustrate the power of non-additive measures and corresponding integrals.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agahi, H., Mesiar, R., Ouyang, Y.: General Minkowski type inequalities for Sugeno integrals. Fuzzy Sets and Systems 161, 708–715 (2010)
Agahi, H., Mesiar, R., Ouyang, Y.: New general extensions of Chebyshev type inequalities for Sugeno integrals. Int. J. of Approximate Reasoning 51, 135–140 (2009)
Agahi, H., Mesiar, R., Ouyang, Y.: Chebyshev type inequalities for pseudo-integrals. Nonlinear Analysis: Theory, Methods and Applications 72, 2737–2743 (2010)
Agahi, H., Mesiar, R., Ouyang, Y., Pap, E., Štrboja, M.: Hölder and Minkowski type inequalities for pseudo-integral. Applied Mathematics and Computation 217(21), 8630–8639 (2011)
Agahi, H., Mesiar, R., Ouyang, Y., Pap, E., Štrboja, M.: Berwald type inequality for Sugeno integral. Applied Mathematics and Computation 217, 4100–4108 (2010)
Akian, M.: Densities of idempotent measures and large deviations. Transactions of the American Mathematical Society 351(11), 4515–4543 (1999)
Bede, B., O’Regan, D.: The theory of pseudo-linear operators. Knowledge Based Systems 38, 19–26 (2013)
Del Moral, P.: Résolution particulaire des problèmes d’estimation et d’optimisation non-linéaires. Thesis dissertation, Université Paul Sabatier, Toulouse (1994)
Denneberg, D.: Non-additive measure and integral. Kluwer Academic Publishers, Dordrecht (1994)
Dubois, D., Pap, E., Prade, H.: Hybrid probabilistic-possibilistic mixtures and utility functions. In: Fodor, J., de Baets, B., Perny, P. (eds.) Preferences and Decisions under Incomplete Knowledge. STUDFUZZ, vol. 51, pp. 51–73. Springer, Heidelberg (2000)
Falconer, K.: Fractal Geometry. John Wiley and Sons, Chichester (1990)
Flores-Franulič, A., Román-Flores, H., Chalco-Cano, Y.: Markov type inequalities for fuzzy integrals. Applied Mathematics and Computation 207, 242–247 (2009)
Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Encyclopedia of Mathematics and Its Applications, vol. 127. Cambridge University Press (2009)
Grabisch, M., Murofushi, T., Sugeno, M. (eds.): Fuzzy Measures and Integrals. Theory and applications. Physica-Verlag, Heidelberg (2000)
Grbić, T., Pap, E.: Generalization of the Portmanteau theorem with respect to the pseudo-weak convergence of random closed sets (Veroyatnost i Primenen.). SIAM Theory of Probability and Its Applications 54(1), 51–67 (2010)
Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. In: Trends in Logic. Studia Logica Library, vol. 8. Kluwer Academic Publishers, Dodrecht (2000)
Klement, E.P., Mesiar, R., Pap, E.: Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 8, 701–717 (2000)
Klement, E.P., Mesiar, R., Pap, E.: A Universal Integral as Common Frame for Choquet and Sugeno Integral. IEEE Transactions on Fuzzy Systems 18(1), 178–187 (2000)
Kolokoltsov, V.N., Maslov, V.P.: Idempotent Analysis and Its Applications. Kluwer Academic Publishers, Dordrecht (1997)
Mesiar, R., Pap, E.: Idempotent integral as limit of g -integrals. Fuzzy Sets and Systems 102, 385–392 (1999)
Mesiar, R., Li, J., Pap, E.: The Choquet integral as Lebesgue integral and related inequalities. Kybernetika 46, 1098–1107 (2010)
Mesiar, R., Li, J., Pap, E.: Discrete pseudo-integrals. Int. J. of Approximative Reasoning 54, 357–364 (2013)
Pap, E.: g-calculus. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23(1), 145–156 (1993)
Pap, E.: Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht (1995)
Pap, E. (ed.): Handbook of Measure Theory. Elsevier, Amsterdam (2002)
Pap, E.: Pseudo-Additive Measures and Their Aplications. Handbook of Measure Theory. In: Pap, E. (ed.) Handbook of Measure Theory, vol. II, pp. 1403–1465. Elsevier (2002)
Pap, E., Štrboja, M.: Generalization of the Jensen inequality for pseudo-integral. Information Sciences 180, 543–548 (2010)
Pap, E., Štrboja, M.: Generalizations of Integral Inequalities for Integrals Based on Nonadditive Measures. In: Pap, E. (ed.) Intelligent Systems: Models and Applications. TIEI, vol. 3, pp. 3–22. Springer, Heidelberg (2013)
Pap, E., Štrboja, M.: Pseudo-L p space and convergence. Fuzzy Sets and Systems (in print)
Puhalskii, A.: Large deviations and idempotent probability. Chapman, Hall/CRC (2001)
Rudas, I.J., Pap, E., Fodor, J.: Information aggregation in intelligent systems: an application oriented approach. Knowledge Based Systems 38, 3–13 (2013)
Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D. Dissertation, Tokyo Institute of Technology (1974)
Sugeno, M., Murofushi, T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122, 197–222 (1987)
Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation Operators. Cognitive Technologies. Springer (2007)
Wang, Z., Klir, G.J.: Generalized measure theory. Springer, Boston (2009)
Wang, R.S.: Some inequalities and convergence theorems for Choquet integrals. J. Appl. Comput. 35(1-2), 305–321 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pap, E. (2013). Theory and Applications of Non-additive Measures and Corresponding Integrals. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Megías, D. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2013. Lecture Notes in Computer Science(), vol 8234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41550-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-41550-0_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41549-4
Online ISBN: 978-3-642-41550-0
eBook Packages: Computer ScienceComputer Science (R0)