Nothing Special   »   [go: up one dir, main page]

Skip to main content

Uniform Shift Estimates for Transmission Problems and Optimal Rates of Convergence for the Parametric Finite Element Method

  • Conference paper
Numerical Analysis and Its Applications (NAA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8236))

Included in the following conference series:

Abstract

Let Ω ⊂ ℝd, \(d \geqslant 1\), be a bounded domain with piecewise smooth boundary ∂ Ω and let U be an open subset of a Banach space Y. Motivated by questions in “Uncertainty Quantification,” we consider a parametric family P = (P y ) y ∈ U of uniformly strongly elliptic, second order partial differential operators P y on Ω. We allow jump discontinuities in the coefficients. We establish a regularity result for the solution u: Ω×U → ℝ of the parametric, elliptic boundary value/transmission problem P y u y  = f y , y ∈ U, with mixed Dirichlet-Neumann boundary conditions in the case when the boundary and the interface are smooth and in the general case for d = 2. Our regularity and well-posedness results are formulated in a scale of broken weighted Sobolev spaces of Babuška-Kondrat’ev type in Ω, possibly augmented by some locally constant functions. This implies that the parametric, elliptic PDEs (P y ) y ∈ U admit a shift theorem that is uniform in the parameter y ∈ U. In turn, this then leads to h m-quasi-optimal rates of convergence (i. e., algebraic orders of convergence) for the Galerkin approximations of the solution u, where the approximation spaces are defined using the “polynomial chaos expansion” of u with respect to a suitable family of tensorized Lagrange polynomials, following the method developed by Cohen, Devore, and Schwab (2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ammann, B., Ionescu, A., Nistor, V.: Sobolev spaces on Lie manifolds and regularity for polyhedral domains. Documenta Math (Electronic) 11, 161–206 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with ramdom input data. SIAM Rev. 52(2), 317–355 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bacuta, C., Nistor, V.: A priori estimates and high order Galerkin approximation for parametric partial differential equations (work in progress)

    Google Scholar 

  4. Bacuta, C., Nistor, V., Zikatanov, L.: Improving the rate of convergence of ‘high order finite elements’ on polygons and domains with cusps. Numerische Mathematik 100, 165–184 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bacuta, C., Nistor, V., Zikatanov, L.: Improving the rate of convergence of high order finite elements on polyhedral II: Mesh refinements and interpolation. Numer. Funct. Anal. Optim. 28(7-8), 775–842 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best N-term Galerkin approximations for a class of elliptic PDEs. Found. Comput. Math. 10(6), 615–646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, A., DeVore, R., Schwab, C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs. Anal. Appl. (Singap.) 9(1), 11–47 (2011)

    Google Scholar 

  8. Fichera, F.: Linear elliptic differential systems and eigenvalue problems. Lecture Notes in Mathematics, vol. 8. Springer, Berlin (1965)

    Book  MATH  Google Scholar 

  9. Gerritsma, M., van der Steen, J., Vos, P., Karniadakis, G.: Time-dependent generalized polynomial chaos. J. Comput. Phys. 229(22), 8333–8363 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, H., Mazzucato, A., Nistor, V.: Analysis of the finite element method for transmission/mixed boundary value problems on general polygonal domains. Electron. Trans. Numer. Anal. 37, 41–69 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Mazzucato, A., Nistor, V.: Well-posedness and regularity for the elasticity equation with mixed boundary conditions on polyhedral domains and domains with cracks. Arch. Ration. Mech. Anal. 195(1), 25–73 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Morrey, C.: Jr.: Second-order elliptic systems of differential equations. In: Contributions to the Theory of Partial Differential Equations. Annals of Mathematics Studies, vol. (33), pp. 101–159. Princeton University Press, Princeton (1954)

    Google Scholar 

  13. Nistor, V.: Schwab, Ch.: High order Galerkin approximations for parametric second order elliptic partial differential equations. ETH Seminar for Applied Mathematics Report 2012-21, to appear in M3AS (2012)

    Google Scholar 

  14. Roĭtberg, J., Šeftel′, Z.: On equations of elliptic type with discontinuous coefficients. Dokl. Akad. Nauk SSSR 146, 1275–1278 (1962).

    Google Scholar 

  15. Roĭtberg, J., Šeftel, Z.: General boundary-value problems for elliptic equations with discontinuous coefficients. Dokl. Akad. Nauk SSSR 148, 1034–1037 (1963).

    Google Scholar 

  16. Schwab, C., Todor, R.: Sparse finite elements for elliptic problems with stochastic loading. Numer. Math. 95(4), 707–734 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wan, X., Karniadakis, G.: Error control in multi-element generalized polynomial chaos method for elliptic problems with random coefficients. Commun. Comput. Phys. 5(2-4), 793–820 (2009)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, H., Nistor, V., Qiao, Y. (2013). Uniform Shift Estimates for Transmission Problems and Optimal Rates of Convergence for the Parametric Finite Element Method. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Numerical Analysis and Its Applications. NAA 2012. Lecture Notes in Computer Science, vol 8236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41515-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41515-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41514-2

  • Online ISBN: 978-3-642-41515-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics