Nothing Special   »   [go: up one dir, main page]

Skip to main content

Unconditionally Stable Schemes for Non-stationary Convection-Diffusion Equations

  • Conference paper
Numerical Analysis and Its Applications (NAA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8236))

Included in the following conference series:

Abstract

Convection-diffusion problem are the base for continuum mechanics. The main features of these problems are associated with an indefinite operator the problem. In this work we construct unconditionally stable scheme for non-stationary convection-diffusion equations, which are based on use of new variables. Also, we consider these equations in the form of convection-diffusion-reaction and construct unconditionally stable schemes when explicit-implicit approximations are used with splitting of the reaction operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Morton, K.W., Kellogg, R.B.: Numerical solution of convection-diffusion problems. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  2. Hundsdorfer, W.H., Verwer, J.G.: Numerical solution of time-dependent advection-diffusion-reaction equations. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  3. Samarskii, A.A.: The theory of difference schemes. CRC Press (2001)

    Google Scholar 

  4. Samarskii, A.A., Matus, P.P., Vabishchevich, P.N.: Difference schemes with operator factors. Kluwer, Dordrecht (2002)

    Book  MATH  Google Scholar 

  5. Samarskii, A.A., Vabishchevich, P.N.: Computational Heat Transfer. Wiley, Chichester (1995)

    Google Scholar 

  6. Mickens, R.E.: Nonstandard Finite Difference Schemes for Differential Equations. Journal of Difference Equations and Applications 8(9), 823–847 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Vabishchevich, P.N., Vasilyeva, M.V.: Explicit-implicit schemes for convection-diffusion-reaction problems. Numerical Analisis and Application 5(1), 297–306 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Afanasyeva, N., Vabishchevich, P.N., Vasilyeva, M. (2013). Unconditionally Stable Schemes for Non-stationary Convection-Diffusion Equations. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Numerical Analysis and Its Applications. NAA 2012. Lecture Notes in Computer Science, vol 8236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41515-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41515-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41514-2

  • Online ISBN: 978-3-642-41515-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics