Nothing Special   »   [go: up one dir, main page]

Skip to main content

Load Rebalancing Games in Dynamic Systems with Migration Costs

  • Conference paper
Algorithmic Game Theory (SAGT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8146))

Included in the following conference series:

  • 1273 Accesses

Abstract

We consider the following dynamic load balancing game: Given an initial assignment of jobs to identical parallel machines, the system is modified; specifically, some machines are added or removed. Each job’s cost is the load on the machine it is assigned to; thus, when machines are added, jobs have an incentive to migrate to the new unloaded machines. When machines are removed, the jobs assigned to them must be reassigned. Consequently, other jobs might also benefit from migrations. In our job-extension penalty model, for a given extension parameter δ ≥ 0, if the machine on which a job is assigned to in the modified schedule is different from its initial machine, then the job’s processing time is extended by δ.

We provide answers to the basic questions arising in this model. Namely, the existence and calculation of a Nash Equilibrium and a Strong Nash Equilibrium, and their inefficiency compared to an optimal schedule. Our results show that the existence of job-migration penalties might lead to poor stable schedules; however, if the modification is a result of a sequence of improvement steps or, better, if the sequence of improvement steps can be supervised in some way (by forcing the jobs to play in a specific order) then any stable modified schedule approximates well an optimal one.

Our work adds two realistic considerations to the study of job scheduling games: the analysis of the common situation in which systems are upgraded or suffer from failures, and the practical fact according to which job migrations are associated with a cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: FOCS (2004)

    Google Scholar 

  2. Andelman, N., Feldman, M., Mansour, Y.: Strong Price of Anarchy. In: SODA (2007)

    Google Scholar 

  3. Azar, Y., Jain, K., Mirrokni, V.S.: (Almost) optimal coordination mechanisms for unrelated machine scheduling. In: SODA (2008)

    Google Scholar 

  4. Belikovetsky, S., Tamir, T.: Load Rebalancing Games in Dynamic Systems with Migration Costs. Full version, http://www.faculty.idc.ac.il/tami/Papers/Rebalance.pdf

  5. Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.: Tight Bounds for Selfish and Greedy Load Balancing. Algorithmica 61(3), 606–637 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. ACM Transactions on Algorithms 3(1) (2007)

    Google Scholar 

  7. Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to Nash equilibria. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 502–513. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Feldman, M., Tamir, T.: Conflicting congestion effects in resource allocation games. Journal of Operation Research 60(3), 529–540 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fiat, A., Kaplan, H., Levy, M., Olonetsky, S.: Strong Price of Anarchy for Machine Load Balancing. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 583–594. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor scheduling. BIT 19(3), 312–320 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The structure and complexity of Nash equilibria for a selfish routing game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Graham, R.L.: Bounds on Multiprocessing Timing Anomalies. SIAM J. Appl. Math. 17, 263–269 (1969)

    Google Scholar 

  13. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: Practical and theoretical results. Journal of the ACM 34(1), 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  14. Koutsoupias, E., Papadimitriou, C.: Worst-case Equilibria. Computer Science Review 3(2), 65–69 (1999)

    Article  Google Scholar 

  15. Papadimitriou, C.: Algorithms, Games, and the Internet. In: STOC (2001)

    Google Scholar 

  16. Paes Leme, R., Syrgkanis, V., Tardos, É.: The curse of simultaneity. In: ITCS (2012)

    Google Scholar 

  17. Vöcking, B.: In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory: Selfish Load Balancing, ch. 20. Cambridge University Press (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belikovetsky, S., Tamir, T. (2013). Load Rebalancing Games in Dynamic Systems with Migration Costs. In: Vöcking, B. (eds) Algorithmic Game Theory. SAGT 2013. Lecture Notes in Computer Science, vol 8146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41392-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41392-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41391-9

  • Online ISBN: 978-3-642-41392-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics