Nothing Special   »   [go: up one dir, main page]

Skip to main content

Diversifying Tag Selection Result for Tag Clouds by Enhancing both Coverage and Dissimilarity

  • Conference paper
Web Information Systems Engineering – WISE 2013 (WISE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8181))

Included in the following conference series:

Abstract

Tag cloud has been a popular facility used by social sites for online resource summarization and navigation. Tag selection, which aims to select a limited number of representative tags from a large set of tags, is the core task for creating tag clouds. Diversity of tag selection result is an important factor that affects user satisfaction. Information coverage and item dissimilarity are two major perspectives for exploring the concept of diversity, while existing tag selection approaches usually consider diversification from single perspective. In this paper, we propose a new approach for diversifying tag selection result, which takes into account both information coverage and tag dissimilarity. We design two sub-objective functions about information coverage and tag dissimilarity, respectively, and construct an objective function as a convex combination of the two sub-objective ones. We also give out a greedy algorithm that can well approximate the objective function. We conduct experiments on 17 datasets extracted from the website of CiteULike to compare our approach with existing ones. The experiment results show that our approach can achieve promising performance of diversification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hassan-Montero, Y., Herrero-Solana, V.: Improving tag-clouds as visual information retrieval interfaces. In: Proceedings of International Conference on Multidisciplinary Information Sciences and Technologies 2006, pp. 25–28 (2006)

    Google Scholar 

  2. Skoutas, D., Alrifai, M.: Tag clouds revisited. In: CIKM 2011, pp. 221–230 (2011)

    Google Scholar 

  3. Venetis, P., Koutrika, G., Garcia-Molina, H.: On the selection of tags for tag clouds. In: WSDM 2011, pp. 835–844 (2011)

    Google Scholar 

  4. Borodin, A., Lee, H.C., Ye, Y.: Max-sum diversification, monotone submodular functions and dynamic updates. In: PODS 2012, pp. 155–166 (2012)

    Google Scholar 

  5. Carbonell, J., Goldstein, J.: The use of mmr, diversity-based reranking for reordering documents and producing summaries. In: SIGIR 1998, pp. 335–336 (1998)

    Google Scholar 

  6. Gollapudi, S., Sharma, A.: An axiomatic approach for result diversification. In: WWW 2009, pp. 381–390 (2009)

    Google Scholar 

  7. Yu, C., Lakshmanan, L., Amer-Yahia, S.: It takes variety to make a world: diversification in recommender systems. In: EDBT 2009, pp. 368–378 (2009)

    Google Scholar 

  8. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: WSDM 2009, pp. 5–14 (2009)

    Google Scholar 

  9. Liu, K., Terzi, E., Grandison, T.: Highlighting diverse concepts in documents. In: SDM 2009, 545–556 (2009)

    Google Scholar 

  10. Bansal, N., Jain, K., Kazeykina, A., Naor, J(S.): Approximation algorithms for diversified search ranking. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 273–284. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Clarke, C., Kolla, M., Cormack, G., Vechtomova, O., Ashkan, A., Büttcher, S., MacKinnon, I.: Novelty and diversity in information retrieval evaluation. In: SIGIR 2008, 659–666 (2008)

    Google Scholar 

  12. Zhai, C., Cohen, W., Lafferty, J.: Beyond independent relevance: methods and evaluation metrics for subtopic retrieval. In: SIGIR 2003, 10–17 (2003)

    Google Scholar 

  13. Demidova, E., Fankhauser, P., Zhou, X., Nejdl, W.: Divq: diversification for keyword search over structured databases. In: SIGIR 2010, 331–338 (2010)

    Google Scholar 

  14. Fraternali, P., Martinenghi, D., Tagliasacchi, M.: Top-k bounded diversification. In: SIGMOD 2012, 421–432 (2012)

    Google Scholar 

  15. Lin, H., Bilmes, J.: A class of submodular functions for document summarization. In: ACL-HLT 2011, 510–520 (2011)

    Google Scholar 

  16. Tsaparas, P., Ntoulas, A., Terzi, E.: Selecting a comprehensive set of reviews. In: KDD 2011, 168–176 (2011)

    Google Scholar 

  17. Hurley, N., Zhang, M.: Novelty and diversity in top-n recommendation–analysis and evaluation. TOIT 10(4), 14 (2011)

    Article  Google Scholar 

  18. Drosou, M., Pitoura, E.: Search result diversification. SIGMOD Record 39(1), 41–47 (2010)

    Article  Google Scholar 

  19. Halpin, H., Robu, V., Shepherd, H.: The complex dynamics of collaborative tagging. In: WWW 2007, pp. 211–220 (2007)

    Google Scholar 

  20. Mika, P.: Ontologies are us: A unified model of social networks and semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of approximations for maximizing submodular set functions. Mathematical Programming 14(1), 265–294 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Song, Y., Zhuang, Z., Li, H., Zhao, Q., Li, J., Lee, W., Giles, C.: Real-time automatic tag recommendation. In: SIGIR 2008, 515–522 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, M., Zhou, X., Tao, Q., Wu, W., Zhao, C. (2013). Diversifying Tag Selection Result for Tag Clouds by Enhancing both Coverage and Dissimilarity. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds) Web Information Systems Engineering – WISE 2013. WISE 2013. Lecture Notes in Computer Science, vol 8181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41154-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41154-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41153-3

  • Online ISBN: 978-3-642-41154-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics