Abstract
Tag cloud has been a popular facility used by social sites for online resource summarization and navigation. Tag selection, which aims to select a limited number of representative tags from a large set of tags, is the core task for creating tag clouds. Diversity of tag selection result is an important factor that affects user satisfaction. Information coverage and item dissimilarity are two major perspectives for exploring the concept of diversity, while existing tag selection approaches usually consider diversification from single perspective. In this paper, we propose a new approach for diversifying tag selection result, which takes into account both information coverage and tag dissimilarity. We design two sub-objective functions about information coverage and tag dissimilarity, respectively, and construct an objective function as a convex combination of the two sub-objective ones. We also give out a greedy algorithm that can well approximate the objective function. We conduct experiments on 17 datasets extracted from the website of CiteULike to compare our approach with existing ones. The experiment results show that our approach can achieve promising performance of diversification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hassan-Montero, Y., Herrero-Solana, V.: Improving tag-clouds as visual information retrieval interfaces. In: Proceedings of International Conference on Multidisciplinary Information Sciences and Technologies 2006, pp. 25–28 (2006)
Skoutas, D., Alrifai, M.: Tag clouds revisited. In: CIKM 2011, pp. 221–230 (2011)
Venetis, P., Koutrika, G., Garcia-Molina, H.: On the selection of tags for tag clouds. In: WSDM 2011, pp. 835–844 (2011)
Borodin, A., Lee, H.C., Ye, Y.: Max-sum diversification, monotone submodular functions and dynamic updates. In: PODS 2012, pp. 155–166 (2012)
Carbonell, J., Goldstein, J.: The use of mmr, diversity-based reranking for reordering documents and producing summaries. In: SIGIR 1998, pp. 335–336 (1998)
Gollapudi, S., Sharma, A.: An axiomatic approach for result diversification. In: WWW 2009, pp. 381–390 (2009)
Yu, C., Lakshmanan, L., Amer-Yahia, S.: It takes variety to make a world: diversification in recommender systems. In: EDBT 2009, pp. 368–378 (2009)
Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: WSDM 2009, pp. 5–14 (2009)
Liu, K., Terzi, E., Grandison, T.: Highlighting diverse concepts in documents. In: SDM 2009, 545–556 (2009)
Bansal, N., Jain, K., Kazeykina, A., Naor, J(S.): Approximation algorithms for diversified search ranking. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 273–284. Springer, Heidelberg (2010)
Clarke, C., Kolla, M., Cormack, G., Vechtomova, O., Ashkan, A., Büttcher, S., MacKinnon, I.: Novelty and diversity in information retrieval evaluation. In: SIGIR 2008, 659–666 (2008)
Zhai, C., Cohen, W., Lafferty, J.: Beyond independent relevance: methods and evaluation metrics for subtopic retrieval. In: SIGIR 2003, 10–17 (2003)
Demidova, E., Fankhauser, P., Zhou, X., Nejdl, W.: Divq: diversification for keyword search over structured databases. In: SIGIR 2010, 331–338 (2010)
Fraternali, P., Martinenghi, D., Tagliasacchi, M.: Top-k bounded diversification. In: SIGMOD 2012, 421–432 (2012)
Lin, H., Bilmes, J.: A class of submodular functions for document summarization. In: ACL-HLT 2011, 510–520 (2011)
Tsaparas, P., Ntoulas, A., Terzi, E.: Selecting a comprehensive set of reviews. In: KDD 2011, 168–176 (2011)
Hurley, N., Zhang, M.: Novelty and diversity in top-n recommendation–analysis and evaluation. TOIT 10(4), 14 (2011)
Drosou, M., Pitoura, E.: Search result diversification. SIGMOD Record 39(1), 41–47 (2010)
Halpin, H., Robu, V., Shepherd, H.: The complex dynamics of collaborative tagging. In: WWW 2007, pp. 211–220 (2007)
Mika, P.: Ontologies are us: A unified model of social networks and semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)
Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of approximations for maximizing submodular set functions. Mathematical Programming 14(1), 265–294 (1978)
Song, Y., Zhuang, Z., Li, H., Zhao, Q., Li, J., Lee, W., Giles, C.: Real-time automatic tag recommendation. In: SIGIR 2008, 515–522 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, M., Zhou, X., Tao, Q., Wu, W., Zhao, C. (2013). Diversifying Tag Selection Result for Tag Clouds by Enhancing both Coverage and Dissimilarity. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds) Web Information Systems Engineering – WISE 2013. WISE 2013. Lecture Notes in Computer Science, vol 8181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41154-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-41154-0_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41153-3
Online ISBN: 978-3-642-41154-0
eBook Packages: Computer ScienceComputer Science (R0)