Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Generic, Robust and Fully-Automatic Workflow for 3D CT Liver Segmentation

  • Conference paper
Abdominal Imaging. Computation and Clinical Applications (ABD-MICCAI 2013)

Abstract

Liver segmentation in 3D CT images is a fundamental step for surgery planning and follow-up. Robustness, automation and speed are required to fulfill this task efficiently. We propose a fully-automatic workflow for liver segmentation built on state-of-the-art algorithmic components to meet these requirements. The liver is first localized using regression forests. A liver probability map is computed, followed by a global-to-local segmentation strategy using a template deformation framework. We evaluate our method on the SLIVER07 reference database and confirm its state-of-the-art results on a large, varied database of 268 CT volumes. This extensive validation demonstrates the robustness of our approach to variable fields of view, liver contrast, shape and pathologies. Our framework is an attractive tradeoff between robustness, accuracy (mean distance to ground truth of 1.7mm) and computational speed (46s). We also emphasize the genericity and relative simplicity of our framework, which requires very limited liver-specific tuning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Murthy, R., Nunez, R., Szklaruk, J., Erwin, W., Madoff, D.C., Gupta, S., Ahrar, K., Wallace, M.J.: Yttrium-90 microsphere therapy for hepatic malignancy: Devices, indications, technical considerations, and potential complications. Radiographics 25(suppl. 1), 41–55 (2005)

    Article  Google Scholar 

  2. Campadelli, P., Casiraghi, E., Esposito, A.: Liver segmentation from computed tomography scans: A survey and a new algorithm. Artificial Intelligence in Medicine 45(2-3), 185–196 (2009)

    Article  Google Scholar 

  3. Mharib, A.M., Ramli, A.R., Mashohor, S., Mahmood, R.B.: Survey on liver CT image segmentation methods. Artificial Intelligence Review 37(2), 83–95 (2011)

    Article  Google Scholar 

  4. Heimann, T., Styner, M., van Ginneken, B.: Sliver07 (2007), http://www.sliver07.org (accessed: May 12, 2013)

  5. Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Transactions on Medical Imaging 28(8), 1251–1265 (2009)

    Article  Google Scholar 

  6. Ling, H., Zhou, S.K., Zheng, Y., Georgescu, B., Suehling, M., Comaniciu, D.: Hierarchical, learning-based automatic liver segmentation. In: Proc. CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  7. Zhang, X., Tian, J., Deng, K., Wu, Y., Li, X.: Automatic liver segmentation using a statistical shape model with optimal surface detection. IEEE Transactions on Biomedical Engineering 57(10), 2622–2626 (2010)

    Article  Google Scholar 

  8. Linguraru, M.G., Sandberg, J.K., Li, Z., Shah, F., Summers, R.M.: Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation. Medical Physics 37(2), 771 (2010)

    Article  Google Scholar 

  9. Cuingnet, R., Prevost, R., Lesage, D., Cohen, L.D., Mory, B., Ardon, R.: Automatic detection and segmentation of kidneys in 3D CT images using random forests. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 66–74. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Criminisi, A., Robertson, D., Konukoglu, E., Shotton, J., Pathak, S., White, S., Siddiqui, K.: Regression forests for efficient anatomy detection and localization in computed tomography scans. Medical Image Analysis (in press, 2013)

    Google Scholar 

  11. Mory, B., Somphone, O., Prevost, R., Ardon, R.: Real-time 3D image segmentation by user-constrained template deformation. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 561–568. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging 29, 196–205 (2010)

    Article  Google Scholar 

  13. Fitzgibbon, A.W.: Robust registration of 2D and 3D point sets. Image and Vision Computing 21(13-14), 1145–1153 (2003)

    Article  Google Scholar 

  14. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analaysis and Machine Intelligence 14(2), 239–256 (1992)

    Article  Google Scholar 

  15. He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Kainmüller, D., Lange, T., Lamecker, H.: Shape constrained automatic segmentation of the liver based on a heuristic intensity model. In: Proc. MICCAI Workshop 3D Segmentation in the Clinic: A Grand Challenge, pp. 109–116 (2007)

    Google Scholar 

  17. Wimmer, A., Soza, G., Hornegger, J.: A generic probabilistic active shape model for organ segmentation. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 26–33. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Linguraru, M.G., Richbourg, W.J., Watt, J.M., Pamulapati, V., Summers, R.M.: Liver and tumor segmentation and analysis from CT of diseased patients via a generic affine invariant shape parameterization and graph cuts. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging 2011. LNCS, vol. 7029, pp. 198–206. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Huang, C., Jia, F., Li, Y., Zhang, X., Luo, H., Fang, C., Fan, Y.: Fully automatic liver segmentation using probability atlas registration. In: International Conference on Electronics, Communications and Control 2012, pp. 126–129 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gauriau, R. et al. (2013). A Generic, Robust and Fully-Automatic Workflow for 3D CT Liver Segmentation. In: Yoshida, H., Warfield, S., Vannier, M.W. (eds) Abdominal Imaging. Computation and Clinical Applications. ABD-MICCAI 2013. Lecture Notes in Computer Science, vol 8198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41083-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41083-3_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41082-6

  • Online ISBN: 978-3-642-41083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics