Nothing Special   »   [go: up one dir, main page]

Skip to main content

Image Retrieval for Online Browsing in Large Image Collections

  • Conference paper
Similarity Search and Applications (SISAP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8199))

Included in the following conference series:

Abstract

Two new methods for large scale image retrieval are proposed, showing that the classical ranking of images based on similarity addresses only one of possible user requirements. The novel retrieval methods add zoom-in and zoom-out capabilities and answer the “What is this?” and “Where is this?” questions.

The functionality is obtained by modifying the scoring and ranking functions of a standard bag-of-words image retrieval pipeline. We show the importance of the DAAT scoring and query expansion for recall of zoomed images.

The proposed methods were tested on a standard large annotated image dataset together with images of Sagrada Familia and 100000 image confusers downloaded from Flickr. For completeness, we present in detail components of image retrieval pipelines in state-of-the-art systems. Finally, open problems related to zoom-in and zoom-out queries are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aasheim, Y., Lidal, M., Risvik, K.M.: Multi-tier architecture for web search engines. In: Proceedings of First Latin American Web Congress (2003)

    Google Scholar 

  2. Arandjelovic, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: Proc. CVPR, pp. 2911–2918. IEEE (2012)

    Google Scholar 

  3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press, ISBN: 020139829 (1999)

    Google Scholar 

  4. Barroso, L.A., Dean, J., Holzle, U.: Web search for a planet: The google cluster architecture. IEEE Micro 23 (2003)

    Google Scholar 

  5. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Buckley, C., Salton, G., Allan, J., Singhal, A.: Automatic query expansion using smart: Trec 3, pp. 69–69. NIST Special Publication Sp (1995)

    Google Scholar 

  7. Chum, O., Matas, J.: Unsupervised discovery of co-occurrence in sparse high dimensional data. In: Proc. CVPR (2010)

    Google Scholar 

  8. Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Chum, O., Mikulik, A., Perdoch, M., Matas, J.: Total recall ii: Query expansion revisited. In: Proc. CVPR, pp. 889–896. IEEE Computer Society, Los Alamitos (2011) CD-ROM

    Google Scholar 

  10. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: Automatic query expansion with a generative feature model for object retrieval. In: Proc. ICCV (2007)

    Google Scholar 

  11. Doubek, P., Matas, J., Perdoch, M., Chum, O.: Image matching and retrieval by repetitive patterns. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 3195–3198. IEEE (2010)

    Google Scholar 

  12. Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classifiers. In: Advances in Neural Information Processing Systems, pp. 487–493 (1999)

    Google Scholar 

  13. Jégou, H., Douze, M., Schmid, C.: On the burstiness of visual elements. In: Proc. CVPR (2009)

    Google Scholar 

  14. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE PAMI 33(1), 117–128 (2011)

    Article  Google Scholar 

  15. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: Proc. CVPR (2010)

    Google Scholar 

  16. Leung, T., Malik, J.: Detecting, localizing and grouping repeated scene elements from an image. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 546–555. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  17. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. In: Proc. ICCV, vol. 60(2), pp. 91–110 (2004)

    Google Scholar 

  18. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Rosin, P.L., Marshall, D. (eds.) Proc. BMVC, vol. 1, pp. 384–393. BMVA, London (2002)

    Google Scholar 

  19. Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. IJCV 65(1/2), 43–72 (2005)

    Article  Google Scholar 

  21. Mikulik, A., Perďoch, M., Chum, O., Matas, J.: Learning vocabularies over a fine quantization. IJCV, 1–13 (2012)

    Google Scholar 

  22. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: VISSAPP (2009)

    Google Scholar 

  23. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proc. CVPR (2006)

    Google Scholar 

  24. Oliva, A., Torralba, A.: Building the gist of a scene: The role of global image features in recognition. Visual Perception, Progress in Brain Research 155 (2006)

    Google Scholar 

  25. Perdoch, M., Chum, O., Matas, J.: Efficient representation of local geometry for large scale object retrieval. In: Proc. CVPR (2009)

    Google Scholar 

  26. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Proc. CVPR (2007)

    Google Scholar 

  27. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: Improving particular object retrieval in largescale image databases. In: Proc. CVPR (2008)

    Google Scholar 

  28. Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback. In: Readings in Information Retrieval, pp. 355–364 (1997)

    Google Scholar 

  29. Schaffalitzky, F., Zisserman, A.: Multi-view matching for unordered image sets, or how do I organize my holiday snaps? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 414–431. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  30. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: Proc. ICCV, pp. 1470–1477 (2003)

    Google Scholar 

  31. Stewénius, H., Gunderson, S.H., Pilet, J.: Size matters: Exhaustive geometric verification for image retrieval accepted for ECCV 2012. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 674–687. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  32. Torii, A., Sivic, J., Pajdla, T.: Okutomi M. Visual place recognition with repetitive structures. In: Proc. CVPR (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mikulik, A., Chum, O., Matas, J. (2013). Image Retrieval for Online Browsing in Large Image Collections. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds) Similarity Search and Applications. SISAP 2013. Lecture Notes in Computer Science, vol 8199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41062-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41062-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41061-1

  • Online ISBN: 978-3-642-41062-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics