Abstract
Two new methods for large scale image retrieval are proposed, showing that the classical ranking of images based on similarity addresses only one of possible user requirements. The novel retrieval methods add zoom-in and zoom-out capabilities and answer the “What is this?” and “Where is this?” questions.
The functionality is obtained by modifying the scoring and ranking functions of a standard bag-of-words image retrieval pipeline. We show the importance of the DAAT scoring and query expansion for recall of zoomed images.
The proposed methods were tested on a standard large annotated image dataset together with images of Sagrada Familia and 100000 image confusers downloaded from Flickr. For completeness, we present in detail components of image retrieval pipelines in state-of-the-art systems. Finally, open problems related to zoom-in and zoom-out queries are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aasheim, Y., Lidal, M., Risvik, K.M.: Multi-tier architecture for web search engines. In: Proceedings of First Latin American Web Congress (2003)
Arandjelovic, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: Proc. CVPR, pp. 2911–2918. IEEE (2012)
Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press, ISBN: 020139829 (1999)
Barroso, L.A., Dean, J., Holzle, U.: Web search for a planet: The google cluster architecture. IEEE Micro 23 (2003)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Buckley, C., Salton, G., Allan, J., Singhal, A.: Automatic query expansion using smart: Trec 3, pp. 69–69. NIST Special Publication Sp (1995)
Chum, O., Matas, J.: Unsupervised discovery of co-occurrence in sparse high dimensional data. In: Proc. CVPR (2010)
Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg (2003)
Chum, O., Mikulik, A., Perdoch, M., Matas, J.: Total recall ii: Query expansion revisited. In: Proc. CVPR, pp. 889–896. IEEE Computer Society, Los Alamitos (2011) CD-ROM
Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: Automatic query expansion with a generative feature model for object retrieval. In: Proc. ICCV (2007)
Doubek, P., Matas, J., Perdoch, M., Chum, O.: Image matching and retrieval by repetitive patterns. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 3195–3198. IEEE (2010)
Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classifiers. In: Advances in Neural Information Processing Systems, pp. 487–493 (1999)
Jégou, H., Douze, M., Schmid, C.: On the burstiness of visual elements. In: Proc. CVPR (2009)
Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE PAMI 33(1), 117–128 (2011)
Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: Proc. CVPR (2010)
Leung, T., Malik, J.: Detecting, localizing and grouping repeated scene elements from an image. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 546–555. Springer, Heidelberg (1996)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. In: Proc. ICCV, vol. 60(2), pp. 91–110 (2004)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Rosin, P.L., Marshall, D. (eds.) Proc. BMVC, vol. 1, pp. 384–393. BMVA, London (2002)
Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. IJCV 65(1/2), 43–72 (2005)
Mikulik, A., Perďoch, M., Chum, O., Matas, J.: Learning vocabularies over a fine quantization. IJCV, 1–13 (2012)
Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: VISSAPP (2009)
Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proc. CVPR (2006)
Oliva, A., Torralba, A.: Building the gist of a scene: The role of global image features in recognition. Visual Perception, Progress in Brain Research 155 (2006)
Perdoch, M., Chum, O., Matas, J.: Efficient representation of local geometry for large scale object retrieval. In: Proc. CVPR (2009)
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Proc. CVPR (2007)
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: Improving particular object retrieval in largescale image databases. In: Proc. CVPR (2008)
Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback. In: Readings in Information Retrieval, pp. 355–364 (1997)
Schaffalitzky, F., Zisserman, A.: Multi-view matching for unordered image sets, or how do I organize my holiday snaps? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 414–431. Springer, Heidelberg (2002)
Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: Proc. ICCV, pp. 1470–1477 (2003)
Stewénius, H., Gunderson, S.H., Pilet, J.: Size matters: Exhaustive geometric verification for image retrieval accepted for ECCV 2012. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 674–687. Springer, Heidelberg (2012)
Torii, A., Sivic, J., Pajdla, T.: Okutomi M. Visual place recognition with repetitive structures. In: Proc. CVPR (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mikulik, A., Chum, O., Matas, J. (2013). Image Retrieval for Online Browsing in Large Image Collections. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds) Similarity Search and Applications. SISAP 2013. Lecture Notes in Computer Science, vol 8199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41062-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-41062-8_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41061-1
Online ISBN: 978-3-642-41062-8
eBook Packages: Computer ScienceComputer Science (R0)