Abstract
Emotions constitute a key factor in human communication. Human emotion can be expressed through various mediums such as speech, facial expressions, gestures and textual data. A quite common way for people to communicate with each other and with computer systems is via written text. In this paper we present an emotion detection system used to automatically recognize emotions in text. The system takes as input natural language sentences, analyzes them and determines the underlying emotion being conveyed. It implements a keyword-based approach where the emotional state of a sentence is constituted by the emotional affinity of the sentence’s emotional words. The system uses lexical resources to spot words known to have emotional content and analyses sentence structure to specify their strength. Experimental results indicate quite satisfactory performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alm, C.O., Roth, D., Sproat, R.: Emotions from text: machine learning for text-based emotion prediction. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 579–586 (2005)
Brilis, S., Gkatzou, E., Koursoumis, A., Talvis, K., Kermanidis, K.L., Karydis, I.: Mood Classification Using Lyrics and Audio: A Case-Study in Greek Music. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H., Karatzas, K., Sioutas, S. (eds.) AIAI 2012 Workshops, Part II. IFIP AICT, vol. 382, pp. 421–430. Springer, Heidelberg (2012)
Calvo, R.A., D’Mello, S.: Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications. IEEE Transactions on Affective Computing 1(1), 18–37 (2010)
De Marneffe, M.C., MacCartney, B., Manning, C.D.: Generating typed dependency parses from phrase structure parses. In: Proceedings of LREC, vol. 6, pp. 449–454 (2006)
Dictionary, Oxford English. Oxford english dictionary (2008)
Ekman, P.: Basic emotions. In: Handbook of cognition and emotion, pp. 45–60 (1999)
Esuli, A., Sebastiani, F.: Sentiwordnet: A publicly available lexical resource for opinion mining. In: Proceedingsof LREC, vol. 6, pp. 417–422 (2006)
Katsionis, G., Virvou, M.: Adapting OCC theory for affect perception in educational software. In: The 11th International Conference on Human-Computer Interaction (2005)
Neviarouskaya, A., Prendinger, H., Ishizuka, M.: Textual affect sensing for sociable and expressive online communication. In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 218–229. Springer, Heidelberg (2007)
Ortony, A., Clore, G., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, Cambridge (1988)
Osherenko, A., André, E.: Lexical affect sensing: Are affect dictionaries necessary to analyze affect? In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 230–241. Springer, Heidelberg (2007)
Picard, R.: Affective Computing. The MIT Press, Cambridge (1997)
Santos, O.C., Boticario, J.G., Arevalillo-Herraez, M., Saneiro, M., Cabestrero, R., del Campo, E., Salmeron-Majadas, S.: MAMIPEC-Affective Modeling in Inclusive Personalized Educational Scenarios. In: Bulletin of the IEEE Technical Committee on Learning Technology, vol. 14(4), p. 35 (2007)
Schmid, H.: Probabilistic Part-of-Speech Tagging Using Decision Trees. In: Proceedings of the International Conference on New Methods in Language Processing, pp. 44–49 (1994)
Shanahan, J.G., Qu, Y., Wiebe, J.: Computing attitude and affect in text: theory and applications, vol. 20. Springer (2006)
Shen, L., Wang, M., Shen, R.: Affective e-learning: Using “emotional” data to improve learning in pervasive learning environment. Educational Technology & Society 12(2), 176–189 (2009)
Strapparava, C., Valitutti, A.: WordNet-Affect: an affective extension of WordNet. In: Proceedings of LREC, vol. 4, pp. 1083–1086 (2004)
Zhe, X., Boucouvalas, A.C.: Text-to-emotion engine for real time internet communication. In: Proceedings of International Symposium on Communication Systems, Networks and DSPs, pp. 164–168 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Perikos, I., Hatzilygeroudis, I. (2013). Recognizing Emotion Presence in Natural Language Sentences. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2013. Communications in Computer and Information Science, vol 384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41016-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-41016-1_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41015-4
Online ISBN: 978-3-642-41016-1
eBook Packages: Computer ScienceComputer Science (R0)