Nothing Special   »   [go: up one dir, main page]

Skip to main content

Recognizing Emotion Presence in Natural Language Sentences

  • Conference paper
Engineering Applications of Neural Networks (EANN 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 384))

Abstract

Emotions constitute a key factor in human communication. Human emotion can be expressed through various mediums such as speech, facial expressions, gestures and textual data. A quite common way for people to communicate with each other and with computer systems is via written text. In this paper we present an emotion detection system used to automatically recognize emotions in text. The system takes as input natural language sentences, analyzes them and determines the underlying emotion being conveyed. It implements a keyword-based approach where the emotional state of a sentence is constituted by the emotional affinity of the sentence’s emotional words. The system uses lexical resources to spot words known to have emotional content and analyses sentence structure to specify their strength. Experimental results indicate quite satisfactory performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alm, C.O., Roth, D., Sproat, R.: Emotions from text: machine learning for text-based emotion prediction. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 579–586 (2005)

    Google Scholar 

  2. Brilis, S., Gkatzou, E., Koursoumis, A., Talvis, K., Kermanidis, K.L., Karydis, I.: Mood Classification Using Lyrics and Audio: A Case-Study in Greek Music. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H., Karatzas, K., Sioutas, S. (eds.) AIAI 2012 Workshops, Part II. IFIP AICT, vol. 382, pp. 421–430. Springer, Heidelberg (2012)

    Google Scholar 

  3. Calvo, R.A., D’Mello, S.: Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications. IEEE Transactions on Affective Computing 1(1), 18–37 (2010)

    Article  Google Scholar 

  4. De Marneffe, M.C., MacCartney, B., Manning, C.D.: Generating typed dependency parses from phrase structure parses. In: Proceedings of LREC, vol. 6, pp. 449–454 (2006)

    Google Scholar 

  5. Dictionary, Oxford English. Oxford english dictionary (2008)

    Google Scholar 

  6. Ekman, P.: Basic emotions. In: Handbook of cognition and emotion, pp. 45–60 (1999)

    Google Scholar 

  7. Esuli, A., Sebastiani, F.: Sentiwordnet: A publicly available lexical resource for opinion mining. In: Proceedingsof LREC, vol. 6, pp. 417–422 (2006)

    Google Scholar 

  8. Katsionis, G., Virvou, M.: Adapting OCC theory for affect perception in educational software. In: The 11th International Conference on Human-Computer Interaction (2005)

    Google Scholar 

  9. Neviarouskaya, A., Prendinger, H., Ishizuka, M.: Textual affect sensing for sociable and expressive online communication. In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 218–229. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Ortony, A., Clore, G., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, Cambridge (1988)

    Book  Google Scholar 

  11. Osherenko, A., André, E.: Lexical affect sensing: Are affect dictionaries necessary to analyze affect? In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 230–241. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Picard, R.: Affective Computing. The MIT Press, Cambridge (1997)

    Google Scholar 

  13. Santos, O.C., Boticario, J.G., Arevalillo-Herraez, M., Saneiro, M., Cabestrero, R., del Campo, E., Salmeron-Majadas, S.: MAMIPEC-Affective Modeling in Inclusive Personalized Educational Scenarios. In: Bulletin of the IEEE Technical Committee on Learning Technology, vol. 14(4), p. 35 (2007)

    Google Scholar 

  14. Schmid, H.: Probabilistic Part-of-Speech Tagging Using Decision Trees. In: Proceedings of the International Conference on New Methods in Language Processing, pp. 44–49 (1994)

    Google Scholar 

  15. Shanahan, J.G., Qu, Y., Wiebe, J.: Computing attitude and affect in text: theory and applications, vol. 20. Springer (2006)

    Google Scholar 

  16. Shen, L., Wang, M., Shen, R.: Affective e-learning: Using “emotional” data to improve learning in pervasive learning environment. Educational Technology & Society 12(2), 176–189 (2009)

    Google Scholar 

  17. Strapparava, C., Valitutti, A.: WordNet-Affect: an affective extension of WordNet. In: Proceedings of LREC, vol. 4, pp. 1083–1086 (2004)

    Google Scholar 

  18. Zhe, X., Boucouvalas, A.C.: Text-to-emotion engine for real time internet communication. In: Proceedings of International Symposium on Communication Systems, Networks and DSPs, pp. 164–168 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perikos, I., Hatzilygeroudis, I. (2013). Recognizing Emotion Presence in Natural Language Sentences. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2013. Communications in Computer and Information Science, vol 384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41016-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41016-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41015-4

  • Online ISBN: 978-3-642-41016-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics