Abstract
We are given an unknown binary matrix, where the entries correspond to preferences of users on items. We want to find at least one 1-entry in each row with a minimum number of queries. The number of queries needed heavily depends on the input matrix and a straightforward competitive analysis yields bad results for any online algorithm. Therefore, we analyze our algorithm against a weaker offline algorithm that is given the number of users and a probability distribution according to which the preferences of the users are chosen. We show that our algorithm has an \(\mathcal{O}(\sqrt{n} \log^2 n)\) overhead in comparison to the weaker offline solution. Furthermore, we show that the corresponding overhead for any online algorithm is \(\Omega(\sqrt{n})\), which shows that the performance of our algorithm is within an \(\mathcal{O}(\log^2 n)\) multiplicative factor from optimal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albers, S.: A Competitive Analysis of the List Update Problem with Lookahead. Theoretical Computer Science 197, 95–109 (1998)
Alon, N., Awerbuch, B., Azar, Y., Patt-Shamir, B.: Tell Me Who I Am: An Interactive Recommendation System. In: 18th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA (2006)
Awerbuch, B., Patt-Shamir, B., Peleg, D., Tuttle, M.: Collaboration of Untrusting Peers with Changing Interests. In: Proceedings of the 5th ACM Conference on Electronic Commerce (2004)
Awerbuch, B., Patt-Shamir, B., Peleg, D., Tuttle, M.R.: Improved Recommendation Systems. In: 16th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2005)
Azar, Y., Gamzu, I.: Ranking with Submodular Valuations. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1070–1079 (2011)
Babu, S., Motwani, R., Munagala, K., Nishizawa, I., Widom, J.: Adaptive Ordering of Pipelined Stream Filters. In: ACM SIGMOD International Conference on Management of Data (2004)
Bar-Noy, A., Bellare, M., Halldórsson, M.M., Shachnai, H., Tamir, T.: On Chromatic Sums and Distributed Resource Allocation. Information and Computation 140(2), 183–202 (1998)
Dean, B., Goemans, M., Vondrák, J.: Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity. Mathematics of Operations Research 33, 945–964 (2008)
Drineas, P., Kerenidis, I., Raghavan, P.: Competitive Recommendation Systems. In: 34th ACM Symposium on Theory of Computing (STOC) (2002)
Feige, U., Lovász, L., Tetali, P.: Approximating Min Sum Set Cover. Algorithmica 40, 219–234 (2004)
Goemans, M.X., Vondrák, J.: Stochastic Covering and Adaptivity. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 532–543. Springer, Heidelberg (2006)
Sally, A., Goldman, R.E.: Schapire, and Ronald L. Rivest. Learning Binary Relations and Total Orders. SIAM Journal of Computing 20(3), 245–271 (1993)
Golovin, D., Krause, A.: Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization. Journal of Artificial Intelligence Research (JAIR) 42, 427–486 (2011)
Grove, E.: Online Bin Packing with Lookahead. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete algorithms (1995)
Gupta, A., Nagarajan, V., Ravi, R.: Approximation Algorithms for Optimal Decision Trees and Adaptive TSP Problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 690–701. Springer, Heidelberg (2010)
Kaplan, H., Kushilevitz, E., Mansour, Y.: Learning with Attribute Costs. In: 37th ACM Symposium on Theory of Computing (STOC) (2005)
Liu, Z., Parthasarathy, S., Ranganathan, A., Yang, H.: Near-Optimal Algorithms for Shared Filter Evaluation in Data Stream Systems. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (2008)
Munagala, K., Babu, S., Motwani, R., Widom, J.: The Pipelined Set Cover Problem. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 83–98. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Uitto, J., Wattenhofer, R. (2013). On Competitive Recommendations. In: Jain, S., Munos, R., Stephan, F., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2013. Lecture Notes in Computer Science(), vol 8139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40935-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-40935-6_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40934-9
Online ISBN: 978-3-642-40935-6
eBook Packages: Computer ScienceComputer Science (R0)