Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Competitive Recommendations

  • Conference paper
Algorithmic Learning Theory (ALT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8139))

Included in the following conference series:

Abstract

We are given an unknown binary matrix, where the entries correspond to preferences of users on items. We want to find at least one 1-entry in each row with a minimum number of queries. The number of queries needed heavily depends on the input matrix and a straightforward competitive analysis yields bad results for any online algorithm. Therefore, we analyze our algorithm against a weaker offline algorithm that is given the number of users and a probability distribution according to which the preferences of the users are chosen. We show that our algorithm has an \(\mathcal{O}(\sqrt{n} \log^2 n)\) overhead in comparison to the weaker offline solution. Furthermore, we show that the corresponding overhead for any online algorithm is \(\Omega(\sqrt{n})\), which shows that the performance of our algorithm is within an \(\mathcal{O}(\log^2 n)\) multiplicative factor from optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albers, S.: A Competitive Analysis of the List Update Problem with Lookahead. Theoretical Computer Science 197, 95–109 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Awerbuch, B., Azar, Y., Patt-Shamir, B.: Tell Me Who I Am: An Interactive Recommendation System. In: 18th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA (2006)

    Google Scholar 

  3. Awerbuch, B., Patt-Shamir, B., Peleg, D., Tuttle, M.: Collaboration of Untrusting Peers with Changing Interests. In: Proceedings of the 5th ACM Conference on Electronic Commerce (2004)

    Google Scholar 

  4. Awerbuch, B., Patt-Shamir, B., Peleg, D., Tuttle, M.R.: Improved Recommendation Systems. In: 16th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2005)

    Google Scholar 

  5. Azar, Y., Gamzu, I.: Ranking with Submodular Valuations. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1070–1079 (2011)

    Google Scholar 

  6. Babu, S., Motwani, R., Munagala, K., Nishizawa, I., Widom, J.: Adaptive Ordering of Pipelined Stream Filters. In: ACM SIGMOD International Conference on Management of Data (2004)

    Google Scholar 

  7. Bar-Noy, A., Bellare, M., Halldórsson, M.M., Shachnai, H., Tamir, T.: On Chromatic Sums and Distributed Resource Allocation. Information and Computation 140(2), 183–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dean, B., Goemans, M., Vondrák, J.: Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity. Mathematics of Operations Research 33, 945–964 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Drineas, P., Kerenidis, I., Raghavan, P.: Competitive Recommendation Systems. In: 34th ACM Symposium on Theory of Computing (STOC) (2002)

    Google Scholar 

  10. Feige, U., Lovász, L., Tetali, P.: Approximating Min Sum Set Cover. Algorithmica 40, 219–234 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goemans, M.X., Vondrák, J.: Stochastic Covering and Adaptivity. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 532–543. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Sally, A., Goldman, R.E.: Schapire, and Ronald L. Rivest. Learning Binary Relations and Total Orders. SIAM Journal of Computing 20(3), 245–271 (1993)

    Google Scholar 

  13. Golovin, D., Krause, A.: Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization. Journal of Artificial Intelligence Research (JAIR) 42, 427–486 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Grove, E.: Online Bin Packing with Lookahead. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete algorithms (1995)

    Google Scholar 

  15. Gupta, A., Nagarajan, V., Ravi, R.: Approximation Algorithms for Optimal Decision Trees and Adaptive TSP Problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 690–701. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Kaplan, H., Kushilevitz, E., Mansour, Y.: Learning with Attribute Costs. In: 37th ACM Symposium on Theory of Computing (STOC) (2005)

    Google Scholar 

  17. Liu, Z., Parthasarathy, S., Ranganathan, A., Yang, H.: Near-Optimal Algorithms for Shared Filter Evaluation in Data Stream Systems. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (2008)

    Google Scholar 

  18. Munagala, K., Babu, S., Motwani, R., Widom, J.: The Pipelined Set Cover Problem. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 83–98. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uitto, J., Wattenhofer, R. (2013). On Competitive Recommendations. In: Jain, S., Munos, R., Stephan, F., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2013. Lecture Notes in Computer Science(), vol 8139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40935-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40935-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40934-9

  • Online ISBN: 978-3-642-40935-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics