Abstract
Given the observed abnormal motion dynamics of patients with heart conditions, quantifying cardiac motion in both normal and pathological cases can provide useful insights for therapy planning. In order to be able to analyse the motion over multiple subjects in a robust manner, it is desirable to represent the motion by a low number of parameters. We propose a reduced order cardiac motion model, reduced in space through a polyaffine model, and reduced in time by statistical model order reduction. The method is applied to a data-set of synthetic cases with known ground truth to validate the accuracy of the left ventricular motion tracking, and to validate a patient-specific reduced-order motion model. Population-based statistics are computed on a set of 15 healthy volunteers to obtain separate spatial and temporal bases. Results demonstrate that the reduced model can efficiently detect abnormal motion patterns and even allowed to retrospectively reveal abnormal unnoticed motion within the control subjects.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Tobon-Gomez, C., De-Craene, M., McLeod, K., Lautz, T., Shi, W., Hennemuth, A., Prakosa, A., Wang, H., Carr-White, G., Kapetanakis, S., Lutz, A., Rasche, V., Schaeffter, T., Butakoff, C., Friman, O., Mansi, T., Sermesant, M., Zhuang, X., Ourselin, S., Peitgen, H.O., Pennec, X., Razavi, R., Reuckert, D., Frangi, A., Rhode, K.: Benchmarking framework for myocardial tracking and deformation algorithms: An open access database. Med. Image Anal. (MedIA) (2013)
Chandrashekara, R., Rao, A., Sanchez-Ortiz, G.I., Mohiaddin, R.H., Rueckert, D.: Construction of a statistical model for cardiac motion analysis using nonrigid image registration. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 599–610. Springer, Heidelberg (2003)
Duchateau, N., Craene, M.D., Piella, G., Silva, E., Doltra, A., Sitges, M., Bijnens, B.H., Frangi, A.F.: A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities. Med. Image Anal. (MedIA) 15(3) (2011)
De Craene, M., Duchateau, N., Tobon-Gomez, C., Ghafaryasl, B., Piella, G., Rhode, K., Frange, A.: SPM to the heart: mapping of 4D continuous velocities for motion abnormality quantification. In: Proc. ISBI (2012)
McLeod, K., Seiler, C., Sermesant, M., Pennec, X.: A near-incompressible poly-affine motion model for cardiac function analysis. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 288–297. Springer, Heidelberg (2013)
Metz, C.T., Baka, N., Kirisli, H., Schaap, M., Klein, S., Neefjes, L.A., Mollet, N.R., Lelieveldt, B., de Bruijne, M., Niessen, W.J., et al.: Regression-based cardiac motion prediction from single-phase CTA. Trans. Med. Imaging (TMI) 31(6) (2012)
Hoogendoorn, C., Sukno, F.M., Ordás, S., Frangi, A.F.: Bilinear models for spatio-temporal point distribution analysis. Int. J. Comp. Vis. (IJCV) 85(3) (2009)
Seiler, C., Pennec, X., Reyes, M.: Capturing the multiscale anatomical shape variability with polyaffine transformation trees. Med. Image Anal. (2012)
Prakosa, A., Sermesant, M., Delingette, H., Marchesseau, S., Saloux, E., Allain, P., Villain, N., Ayache, N.: Generation of synthetic but visually realistic time series of cardiac images combining a biophysical model and clinical images. IEEE Trans. Med. Imaging (TMI) (2012)
Mansi, T., Pennec, X., Sermesant, M., Delingette, H., Ayache, N.: iLogDemons: A demons-based registration algorithm for tracking incompressible elastic biological tissues. Int J. Comp. Vision (IJCV) 92(1) (2011)
Perperidis, D., Mohiaddin, R.H., Rueckert, D.: Spatio-temporal free-form registration of cardiac MR image sequences. Med. Image Anal (MedIA) 9(5) (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
McLeod, K., Seiler, C., Sermesant, M., Pennec, X. (2013). Spatio-temporal Dimension Reduction of Cardiac Motion for Group-Wise Analysis and Statistical Testing. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. MICCAI 2013. Lecture Notes in Computer Science, vol 8150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40763-5_62
Download citation
DOI: https://doi.org/10.1007/978-3-642-40763-5_62
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40762-8
Online ISBN: 978-3-642-40763-5
eBook Packages: Computer ScienceComputer Science (R0)