Abstract
We propose a cross-sectional piecewise constant model for the segmentation of highly curved fiber tracts in diffusion MRI scans. An “anchor curve”, obtained via tractography, provides the overall shape of the tract and allows us to examine the tract’s microstructure at the level of cross-sectional planes normal to the curve. Each cross-section is modeled as a piecewise constant image, allowing us to address changes in measured diffusion due to the curving of the tract while still capturing overall tract structure. Results on both synthetic and real data show improved segmentation quality compared to state-of-the-art methods, particularly in areas of crossing fibers.
Chapter PDF
Similar content being viewed by others
Keywords
- Fractional Anisotropy
- Orientation Distribution Function
- Frenet Frame
- Cingulum Bundle
- Ground Truth Segmentation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Mag. Res. Med. 56, 411–421 (2006)
Awate, S.P., Zhang, H., Gee, J.C.: A fuzzy, nonparameteric segmentation framework for DTI and MRI analysis with applications to DTI-tract extraction. IEEE Trans. Med. Imag. 26(11), 1525–1536 (2007)
Barbieri, S., Bauer, M.H., Klein, J., Nimsky, C., Hahn, H.K.: A variational, non-parametric approach to the fuzzy segmentation of diffusion tensor images. In: Proceedings of MICCAI Workshop on Computational Diffusion MRI (CDMRI), pp. 134–145 (2010)
Barmpoutis, A., Vemuri, B.C., Shepherd, T.M., Forder, J.R.: Tensor splines for interpolation and approximation of DT-MRI with applications to segmentation of isolated rat hippocampi. IEEE Trans. Med. Imag. 26(11), 1537–1546 (2007)
Barmpoutis, A., Hwang, M.S., Howland, D., Forder, J.R., Vemuri, B.C.: Regularized positive-definite fourth order tensor field estimation from DW-MRI. NeuroImage 45, S153–S162 (2009)
Booth, B.G., Hamarneh, G.: Exact integration of diffusion orientation distribution functions for graph-based diffusion MRI analysis. In: Proceedings of IEEE ISBI, pp. 935–938 (2011)
Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imag. Vis. 28(2), 151–167 (2007)
Chiang, M.-C., Klunder, A.D., McMahon, K., de Zubicaray, G.I., Wright, M.J., Toga, A.W., Thompson, P.M.: Information-theoretic analysis of brain white matter fiber orientation distribution functions. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 172–182. Springer, Heidelberg (2007)
Descoteaux, M., Deriche, R.: High angular resolution diffusion MRI segmentation using region-based statistical surface evolution. J. Math. Imag. Vis. 33(2), 239–252 (2009)
Feddern, C., Weickert, J., Burgeth, B.: Level-set methods for tensor-valued images. In: Proc. of IEEE Workshop on Geometric and Level Set Methods in Computer Vision, pp. 65–72 (2003)
Lenglet, C., Rousson, M., Deriche, R.: DTI segmentation by statistical surface evolution. IEEE Trans. Med. Imag. 25(6), 685–700 (2006)
de Luis-Garcia, R., Alberola-Lopez, C., Westin, C.F.: Segmentation of Tensor Fields: Recent Advances and Perspectives. In: Tensors in Image Processing and Computer Vision. Springer, London (2009)
Melonakos, J., Niethammer, M., Mohan, V., Kubicki, M., Miller, J., Tannenbaum, A.: Locally-constrained region-based methods for DW-MRI segmentation. In: Proceedings of ICCV, pp. 1–8 (2007)
Nazem-Zadeh, M.R., Davoodi-Bojd, E., Soltanian-Zadeh, H.: Level set fiber bundle segmentation using spherical harmonic coefficients. Computerized Medical Imaging and Graphics 34, 192–202 (2010)
Niethammer, M., Zach, C., Melonakos, J., Tannenbaum, A.: Near-tubular fiber bundle segmentation for diffusion weighted imaging: Segmentation through frame reorientation. NeuroImage 45, S123–S132 (2009)
O’Donnell, L., Westin, C.-F.: White matter tract clustering and correspondence in populations. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005, Part I. LNCS, vol. 3749, pp. 140–147. Springer, Heidelberg (2005)
Vemuri, B.C., Liu, M., Amari, S.I., Nielsen, F.: Total Bregman divergence and its applications to DTI analysis. IEEE Trans. Med. Imag. 30(2), 475–483 (2011)
Zalesky, A.: DT-MRI fiber tracking: A shortest paths approach. IEEE Trans. Med. Imag. 27(10), 1458–1571 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Booth, B.G., Hamarneh, G. (2013). A Cross-Sectional Piecewise Constant Model for Segmenting Highly Curved Fiber Tracts in Diffusion MR Images. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. MICCAI 2013. Lecture Notes in Computer Science, vol 8151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40760-4_59
Download citation
DOI: https://doi.org/10.1007/978-3-642-40760-4_59
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40759-8
Online ISBN: 978-3-642-40760-4
eBook Packages: Computer ScienceComputer Science (R0)