Abstract
The Random Walks (RW) algorithm is one of the most efficient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Specifically, they provide a hard segmentation of the images, instead of a probabilistic segmentation. We overcome this challenge by treating the optimal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach significantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.
Chapter PDF
Similar content being viewed by others
References
Baudin, P.-Y., Azzabou, N., Carlier, P.G., Paragios, N.: Prior knowledge, random walks and human skeletal muscle segmentation. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 569–576. Springer, Heidelberg (2012)
Bertsekas, D.: Nonlinear Programming. Athena Scientific (1999)
Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: CVPR (2008)
Grady, L.: Multilabel random walker image segmentation using prior models. In: CVPR (2005)
Grady, L.: Random walks for image segmentation. PAMI (2006)
Joachims, T., Finley, T., Yu, C.N.: Cutting-plane training of structural SVMs. Machine Learning (2009)
Komodakis, N., Paragios, N., Tziritas, G.: MRF optimization via dual decomposition: Message-passing revisited. In: ICCV (2007)
Smola, A., Vishwanathan, S., Hoffman, T.: Kernel methods for missing variables. In: AISTATS (2005)
Szummer, M., Kohli, P., Hoiem, D.: Learning cRFs using graph cuts. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 582–595. Springer, Heidelberg (2008)
Taskar, B., Guestrin, C., Koller, D.: Max-margin Markov networks. In: NIPS (2003)
Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. In: ICML (2004)
Yu, C.N., Joachims, T.: Learning structural SVMs with latent variables. In: ICML (2009)
Yuille, A., Rangarajan, A.: The concave-convex procedure (CCCP). Neural Computation (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baudin, PY. et al. (2013). Discriminative Parameter Estimation for Random Walks Segmentation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. MICCAI 2013. Lecture Notes in Computer Science, vol 8151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40760-4_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-40760-4_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40759-8
Online ISBN: 978-3-642-40760-4
eBook Packages: Computer ScienceComputer Science (R0)