Nothing Special   »   [go: up one dir, main page]

Skip to main content

Compressing Semantic Metadata for Efficient Multimedia Retrieval

  • Conference paper
Advances in Artificial Intelligence (CAEPIA 2013)

Abstract

The growth in multimedia production has increased the size of audiovisual repositories, and has also led to the formation of increasingly large metadata collections about these contents. Deciding how these collections are effectively represented is challenging due to their variety and volume. Besides, large volumes also affect the performance of metadata retrieval tasks, compromising the success of multimedia search engines. This paper focuses on this scenario and describes a case study in which semantic technologies are used for addressing metadata variety, and advanced compression techniques for dealing with the volume dimension. As a result, we obtain a multimedia search prototype that consumes compressed RDF metadata. This approach efficiently resolves a subset of SPARQL queries by implementing representative multimedia searches, and also provides full-text search in compressed space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baeza-Yates, R., Ribeiro-Neto, B.A.: Modern Information Retrieval - the concepts and technology behind search, 2nd edn. Pearson Education Ltd. (2011)

    Google Scholar 

  2. Berners-Lee, T.: Linked Data: Design Issues (2006), http://www.w3.org/DesignIssues/LinkedData.html

  3. Brisaboa, N.R., Cánovas, R., Claude, F., Martínez-Prieto, M.A., Navarro, G.: Compressed String Dictionaries. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 136–147. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.: Binary RDF representation for publication and exchange. Journal of Web Semantics 19, 22–41 (2013)

    Article  Google Scholar 

  5. Ferragina, P., Manzini, G.: Opportunistic Data Structures with Applications. In: Proc. of FOCS, pp. 390–398 (2000)

    Google Scholar 

  6. González, R., Grabowski, S., Mäkinen, V., Navarro, G.: Practical Implementation of Rank and Select Queries. In: Proc. of WEA, pp. 27–38 (2005)

    Google Scholar 

  7. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: Proc. of SODA, pp. 841–850 (2003)

    Google Scholar 

  8. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Morgan & Claypool (2011), http://linkeddatabook.com/

  9. Manola, F., Miller, E. (eds.): RDF Primer. W3C Recommendation (2004), http://www.w3.org/TR/rdf-primer/

  10. Martínez-Prieto, M.A., Gallego, M.A., Fernández, J.D.: Exchange and Consumption of Huge RDF Data. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 437–452. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Martínez-Prieto, M.A., Fernández, J.D., Cánovas, R.: Querying RDF Dictionaries in Compressed Space. ACM SIGAPP Applied Computing Reviews 12(2), 64–77 (2012)

    Article  Google Scholar 

  12. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C Recommendation (2008), http://www.w3.org/TR/rdf-sparql-query/

  13. Schandl, B., Haslhofer, B., Bürger, T., Langegger, A., Halb, W.: Linked data and multimedia: the state of affairs. Multimedia Tools Appl. 59(2), 523–556 (2012)

    Article  Google Scholar 

  14. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Indexing Documents and Images. Morgan Kaufmann (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arias Gallego, M., Corcho, O., Fernández, J.D., Martínez-Prieto, M.A., Suárez-Figueroa, M.C. (2013). Compressing Semantic Metadata for Efficient Multimedia Retrieval. In: Bielza, C., et al. Advances in Artificial Intelligence. CAEPIA 2013. Lecture Notes in Computer Science(), vol 8109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40643-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40643-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40642-3

  • Online ISBN: 978-3-642-40643-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics