Abstract
The problem addressed in this paper concerns data reduction. In the paper the agent-based data reduction algorithm is extended by adding mechanism of integration of the multiple learning models into a single multiple classification system called ensemble model. The paper includes the overview of the proposed approach and discusses the computational experiment results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aksela, M.: Adaptive Combinations of Classifiers with Application to On-line Handwritten Character Recognition. Department of Computer Science and Engineering. Helsinki University of Technology, Helsinki (2007)
Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html
Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: e-JABAT - An Implementation of the Web-based A-Team. In: Nguyen, N.T., Jain, L.C. (eds.) Intelligence Agents in the Evolution of Web and Applications. SCI, vol. 167, pp. 57–86. Springer, Heidelberg (2009)
Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: Influence of the Working Strategy on A-Team Performance. In: Szczerbicki, E., Nguyen, N.T. (eds.) Smart Information and Knowledge Management. SCI, vol. 260, pp. 83–102. Springer, Heidelberg (2010)
Bauer, E., Kohavi, R.: An Empirical Comparison of Voting Classification Algorithhms: Bagging, Boosting and Variants. Machine Learning 36(1-2), 691–707 (1994)
Bhanu, B., Peng, J.: Adaptive Integration Image Segmentation and Object Recognition. IEEE Trans. on Systems, Man and Cybernetics 30(4), 427–444 (2000)
Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
Bull, L.: Learning Classifier Systems: A Brief Introduction. In: Bull, L. (ed.) Applications of Learning Classifier Systems. STUDFUZZ, vol. 150, pp. 1–12. Springer, Heidelberg (2004)
Chan, P.K., Stolfo, S.J.: Experiments on Multistrategy Learning by Meta-Learning. In: Second International Conference on Information and Knowledge Management, pp. 31–45 (1993)
Czarnowski, I., Jędrzejowicz, P.: Experimental Evaluation of the Agent-Based Population Learning Algorithm for the Cluster-Based Instance Selection. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part II. LNCS (LNAI), vol. 6923, pp. 301–310. Springer, Heidelberg (2011)
Czarnowski, I., Jędrzejowicz, P.: An Approach to Data Reduction and Integrated Machine Classification. New Generation Computing 28, 21–40 (2010)
Czarnowski, I.: Distributed Learning with Data Reduction. In: Nguyen, N.T. (ed.) TCCI IV 2011. LNCS, vol. 6660, pp. 3–121. Springer, Heidelberg (2011)
Datasets used for classification: comparison of results. In. directory of data sets, http://www.is.umk.pl/projects/datasets.html (accessed September 1, 2009)
Ho, T.K.: Data Complexity Analysis for Classifier Combination. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 53–67. Springer, Heidelberg (2001)
Ho, T.K.: The Random Subspace Method for Constructing Decision Forests. IEEE Transaction on PAMI 19(8), 832–844 (1998)
Jędrzejowicz, J., Jędrzejowicz, P.: Cellular GEP-Induced Classifiers. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010, Part I. LNCS, vol. 6421, pp. 343–352. Springer, Heidelberg (2010)
Kuncheva, L., Whitaker: Measures of diversity in classifier ensembles. Machine Learning 51, 181–207 (2003)
Liu, H., Lu, H., Yao, J.: Identifying Relevant Databases for Multidatabase Mining. In: Proceeding of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 210–221 (1998)
Michalski, R.S., Tecuci, G.: Machine Learning. A Multistrategy Approach, vol. IV. Morgan Kaufmann (1994)
Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, SanMateo (1993)
Rozsypal, A., Kubat, M.: Selecting Representative Examples and Attributes by a Genetic Algorithm. Intelligent Data Analysis 7(4), 291–304 (2003)
Silva, J., Giannella, C., Bhargava, R., Kargupta, H., Klusch, M.: Distributed Data Mining and Agents. Engineering Applications of Artificial Intelligence Journal 18, 791–807 (2005)
Stefanowski, J.: Multiple and Hybrid Classifiers. In: Polkowski, L. (ed.) Formal Methods and Intelligent Techniques in Control, Decision Making. Multimedia and Robotics, Warszawa, pp. 174–188 (2001)
Talukdar, S., Baerentzen, L., Gove, A., de Souza, P.: Asynchronous Teams: Co-operation Schemes for Autonomous, Computer-Based Agents, Technical Report EDRC 18-59-96, Carnegie Mellon University, Pittsburgh (1996)
Tsoumakas, G., Angelis, L., Vlahavas, I.: Clustering Classifiers for Knowledge Discovery from Physically Distributed Databases. Data & Knowledge Engineering 49, 223–242 (2004)
Wei, Y., Li, T., Ge, Z.: Combining Distributed Classifies by Stacking. In: Proceedings of the Third International Conference on Genetic and Evolutionary Computing, pp. 418–421 (2009)
Wilson, D.R., Martinez, T.R.: Reduction Techniques for Instance-based Learning Algorithm. Machine Learning 33(3), 257–286 (2000)
Xu, L., Krzyzak, A., Suen, C.Y.: Methods of Combining Multiple Classifiers and their Application to Handwriting Recognition. IEEE Transaction on Systems, Man and Cybernetics 22, 418–435 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Czarnowski, I., Jędrzejowicz, P. (2013). Agent-Based Data Reduction Using Ensemble Technique. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2013. Lecture Notes in Computer Science(), vol 8083. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40495-5_45
Download citation
DOI: https://doi.org/10.1007/978-3-642-40495-5_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40494-8
Online ISBN: 978-3-642-40495-5
eBook Packages: Computer ScienceComputer Science (R0)