Nothing Special   »   [go: up one dir, main page]

Skip to main content

Agent-Based Data Reduction Using Ensemble Technique

  • Conference paper
Computational Collective Intelligence. Technologies and Applications (ICCCI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8083))

Included in the following conference series:

Abstract

The problem addressed in this paper concerns data reduction. In the paper the agent-based data reduction algorithm is extended by adding mechanism of integration of the multiple learning models into a single multiple classification system called ensemble model. The paper includes the overview of the proposed approach and discusses the computational experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aksela, M.: Adaptive Combinations of Classifiers with Application to On-line Handwritten Character Recognition. Department of Computer Science and Engineering. Helsinki University of Technology, Helsinki (2007)

    Google Scholar 

  2. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

    Google Scholar 

  3. Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: e-JABAT - An Implementation of the Web-based A-Team. In: Nguyen, N.T., Jain, L.C. (eds.) Intelligence Agents in the Evolution of Web and Applications. SCI, vol. 167, pp. 57–86. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: Influence of the Working Strategy on A-Team Performance. In: Szczerbicki, E., Nguyen, N.T. (eds.) Smart Information and Knowledge Management. SCI, vol. 260, pp. 83–102. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Bauer, E., Kohavi, R.: An Empirical Comparison of Voting Classification Algorithhms: Bagging, Boosting and Variants. Machine Learning 36(1-2), 691–707 (1994)

    Google Scholar 

  6. Bhanu, B., Peng, J.: Adaptive Integration Image Segmentation and Object Recognition. IEEE Trans. on Systems, Man and Cybernetics 30(4), 427–444 (2000)

    Article  Google Scholar 

  7. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  8. Bull, L.: Learning Classifier Systems: A Brief Introduction. In: Bull, L. (ed.) Applications of Learning Classifier Systems. STUDFUZZ, vol. 150, pp. 1–12. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Chan, P.K., Stolfo, S.J.: Experiments on Multistrategy Learning by Meta-Learning. In: Second International Conference on Information and Knowledge Management, pp. 31–45 (1993)

    Google Scholar 

  10. Czarnowski, I., Jędrzejowicz, P.: Experimental Evaluation of the Agent-Based Population Learning Algorithm for the Cluster-Based Instance Selection. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part II. LNCS (LNAI), vol. 6923, pp. 301–310. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Czarnowski, I., Jędrzejowicz, P.: An Approach to Data Reduction and Integrated Machine Classification. New Generation Computing 28, 21–40 (2010)

    Article  MATH  Google Scholar 

  12. Czarnowski, I.: Distributed Learning with Data Reduction. In: Nguyen, N.T. (ed.) TCCI IV 2011. LNCS, vol. 6660, pp. 3–121. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Datasets used for classification: comparison of results. In. directory of data sets, http://www.is.umk.pl/projects/datasets.html (accessed September 1, 2009)

  14. Ho, T.K.: Data Complexity Analysis for Classifier Combination. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 53–67. Springer, Heidelberg (2001)

    Google Scholar 

  15. Ho, T.K.: The Random Subspace Method for Constructing Decision Forests. IEEE Transaction on PAMI 19(8), 832–844 (1998)

    Google Scholar 

  16. Jędrzejowicz, J., Jędrzejowicz, P.: Cellular GEP-Induced Classifiers. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010, Part I. LNCS, vol. 6421, pp. 343–352. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Kuncheva, L., Whitaker: Measures of diversity in classifier ensembles. Machine Learning 51, 181–207 (2003)

    Article  MATH  Google Scholar 

  18. Liu, H., Lu, H., Yao, J.: Identifying Relevant Databases for Multidatabase Mining. In: Proceeding of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 210–221 (1998)

    Google Scholar 

  19. Michalski, R.S., Tecuci, G.: Machine Learning. A Multistrategy Approach, vol. IV. Morgan Kaufmann (1994)

    Google Scholar 

  20. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  21. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, SanMateo (1993)

    Google Scholar 

  22. Rozsypal, A., Kubat, M.: Selecting Representative Examples and Attributes by a Genetic Algorithm. Intelligent Data Analysis 7(4), 291–304 (2003)

    MATH  Google Scholar 

  23. Silva, J., Giannella, C., Bhargava, R., Kargupta, H., Klusch, M.: Distributed Data Mining and Agents. Engineering Applications of Artificial Intelligence Journal 18, 791–807 (2005)

    Article  Google Scholar 

  24. Stefanowski, J.: Multiple and Hybrid Classifiers. In: Polkowski, L. (ed.) Formal Methods and Intelligent Techniques in Control, Decision Making. Multimedia and Robotics, Warszawa, pp. 174–188 (2001)

    Google Scholar 

  25. Talukdar, S., Baerentzen, L., Gove, A., de Souza, P.: Asynchronous Teams: Co-operation Schemes for Autonomous, Computer-Based Agents, Technical Report EDRC 18-59-96, Carnegie Mellon University, Pittsburgh (1996)

    Google Scholar 

  26. Tsoumakas, G., Angelis, L., Vlahavas, I.: Clustering Classifiers for Knowledge Discovery from Physically Distributed Databases. Data & Knowledge Engineering 49, 223–242 (2004)

    Article  Google Scholar 

  27. Wei, Y., Li, T., Ge, Z.: Combining Distributed Classifies by Stacking. In: Proceedings of the Third International Conference on Genetic and Evolutionary Computing, pp. 418–421 (2009)

    Google Scholar 

  28. Wilson, D.R., Martinez, T.R.: Reduction Techniques for Instance-based Learning Algorithm. Machine Learning 33(3), 257–286 (2000)

    Article  Google Scholar 

  29. Xu, L., Krzyzak, A., Suen, C.Y.: Methods of Combining Multiple Classifiers and their Application to Handwriting Recognition. IEEE Transaction on Systems, Man and Cybernetics 22, 418–435 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czarnowski, I., Jędrzejowicz, P. (2013). Agent-Based Data Reduction Using Ensemble Technique. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2013. Lecture Notes in Computer Science(), vol 8083. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40495-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40495-5_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40494-8

  • Online ISBN: 978-3-642-40495-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics