Abstract
In the paper we address a challenging problem of incorporating preferences on possible shapes of an object in a binary image segmentation framework. We extend the well-known conditional random fields model by adding new variables that are responsible for the shape of an object. We describe the shape via a flexible graph augmented with vertex positions and edge widths. We derive exact and approximate algorithms for MAP estimation of label and shape variables given an image. An original learning procedure for tuning parameters of our model based on unlabeled images with only shape descriptions given is also presented. Experiments confirm that our model improves the segmentation quality in hard-to-segment images by taking into account the knowledge about typical shapes of the object.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In: Proceedings of the 8th IEEE International Conference on Computer Vision, vol. 1, pp. 105–112. IEEE (2001)
Cremers, D., Schmidt, F., Barthel, F.: Shape priors in variational image segmentation: Convexity, lipschitz continuity and globally optimal solutions. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–6. IEEE (2008)
Desai, C., Ramanan, D.: Detecting actions, poses, and objects with relational phraselets. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 158–172. Springer, Heidelberg (2012)
Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. International Journal of Computer Vision 61(1), 55–79 (2005)
Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)
Ferrari, V., Jurie, F., Schmid, C.: From images to shape models for object detection. International Journal of Computer Vision 87(3), 284–303 (2010)
Joachims, T., Finley, T., Yu, C.: Cutting-plane training of structural svms. Machine Learning 77(1), 27–59 (2009)
Kumar, M., Torr, P., Zisserman, A.: Obj cut. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 18–25. IEEE (2005)
Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proceedings of the 18th International Conference on Machine Learning, pp. 282–289. Morgan Kaufmann Publishers Inc. (2001)
Lempitsky, V., Blake, A., Rother, C.: Image segmentation by branch-and-mincut. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 15–29. Springer, Heidelberg (2008)
Lempitsky, V., Kohli, P., Rother, C., Sharp, T.: Image segmentation with a bounding box prior. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 277–284. IEEE (2009)
Rauschert, I., Collins, R.T.: A generative model for simultaneous estimation of human body shape and pixel-level segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 704–717. Springer, Heidelberg (2012)
Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics (TOG) 23, 309–314 (2004)
Veksler, O.: Star shape prior for graph-cut image segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 454–467. Springer, Heidelberg (2008)
Vu, N., Manjunath, B.: Shape prior segmentation of multiple objects with graph cuts. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)
Yangel, B., Vetrov, D.: Image segmentation with a shape prior based on simplified skeleton. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds.) EMMCVPR 2011. LNCS, vol. 6819, pp. 247–260. Springer, Heidelberg (2011)
Yu, C., Joachims, T.: Learning structural svms with latent variables. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1169–1176. ACM (2009)
Yuille, A., Rangarajan, A.: The concave-convex procedure. Neural Computation 15(4), 915–936 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yangel, B., Vetrov, D. (2013). Learning a Model for Shape-Constrained Image Segmentation from Weakly Labeled Data. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, XC. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2013. Lecture Notes in Computer Science, vol 8081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40395-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-40395-8_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40394-1
Online ISBN: 978-3-642-40395-8
eBook Packages: Computer ScienceComputer Science (R0)