Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning a Model for Shape-Constrained Image Segmentation from Weakly Labeled Data

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8081))

Abstract

In the paper we address a challenging problem of incorporating preferences on possible shapes of an object in a binary image segmentation framework. We extend the well-known conditional random fields model by adding new variables that are responsible for the shape of an object. We describe the shape via a flexible graph augmented with vertex positions and edge widths. We derive exact and approximate algorithms for MAP estimation of label and shape variables given an image. An original learning procedure for tuning parameters of our model based on unlabeled images with only shape descriptions given is also presented. Experiments confirm that our model improves the segmentation quality in hard-to-segment images by taking into account the knowledge about typical shapes of the object.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In: Proceedings of the 8th IEEE International Conference on Computer Vision, vol. 1, pp. 105–112. IEEE (2001)

    Google Scholar 

  2. Cremers, D., Schmidt, F., Barthel, F.: Shape priors in variational image segmentation: Convexity, lipschitz continuity and globally optimal solutions. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–6. IEEE (2008)

    Google Scholar 

  3. Desai, C., Ramanan, D.: Detecting actions, poses, and objects with relational phraselets. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 158–172. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. International Journal of Computer Vision 61(1), 55–79 (2005)

    Article  Google Scholar 

  5. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  6. Ferrari, V., Jurie, F., Schmid, C.: From images to shape models for object detection. International Journal of Computer Vision 87(3), 284–303 (2010)

    Article  Google Scholar 

  7. Joachims, T., Finley, T., Yu, C.: Cutting-plane training of structural svms. Machine Learning 77(1), 27–59 (2009)

    Article  MATH  Google Scholar 

  8. Kumar, M., Torr, P., Zisserman, A.: Obj cut. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 18–25. IEEE (2005)

    Google Scholar 

  9. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proceedings of the 18th International Conference on Machine Learning, pp. 282–289. Morgan Kaufmann Publishers Inc. (2001)

    Google Scholar 

  10. Lempitsky, V., Blake, A., Rother, C.: Image segmentation by branch-and-mincut. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 15–29. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Lempitsky, V., Kohli, P., Rother, C., Sharp, T.: Image segmentation with a bounding box prior. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 277–284. IEEE (2009)

    Google Scholar 

  12. Rauschert, I., Collins, R.T.: A generative model for simultaneous estimation of human body shape and pixel-level segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 704–717. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics (TOG) 23, 309–314 (2004)

    Article  Google Scholar 

  14. Veksler, O.: Star shape prior for graph-cut image segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 454–467. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Vu, N., Manjunath, B.: Shape prior segmentation of multiple objects with graph cuts. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  16. Yangel, B., Vetrov, D.: Image segmentation with a shape prior based on simplified skeleton. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds.) EMMCVPR 2011. LNCS, vol. 6819, pp. 247–260. Springer, Heidelberg (2011)

    Google Scholar 

  17. Yu, C., Joachims, T.: Learning structural svms with latent variables. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1169–1176. ACM (2009)

    Google Scholar 

  18. Yuille, A., Rangarajan, A.: The concave-convex procedure. Neural Computation 15(4), 915–936 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yangel, B., Vetrov, D. (2013). Learning a Model for Shape-Constrained Image Segmentation from Weakly Labeled Data. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, XC. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2013. Lecture Notes in Computer Science, vol 8081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40395-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40395-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40394-1

  • Online ISBN: 978-3-642-40395-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics