Nothing Special   »   [go: up one dir, main page]

Skip to main content

Private Learning and Sanitization: Pure vs. Approximate Differential Privacy

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2013, RANDOM 2013)

Abstract

We compare the sample complexity of private learning and sanitization tasks under pure ε-differential privacy [Dwork, McSherry, Nissim, and Smith TCC 2006] and approximate (ε,δ)-differential privacy [Dwork, Kenthapadi, McSherry, Mironov, and Naor EUROCRYPT 2006]. We show that the sample complexity of these tasks under approximate differential privacy can be significantly lower than that under pure differential privacy.

Research supported by the Israel Science Foundation (grants No. 938/09 and 2761/12) and by the Frankel Center for Computer Science at Ben-Gurion University. Work done while the second author was a Visiting Scholar at the Harvard Center for Research on Computation and Society (CRCS). Work partially done when the third author was visiting Harvard University supported in part by NSF grant CNS-1237235 and a gift from Google, Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beimel, A., Kasiviswanathan, S.P., Nissim, K.: Bounds on the sample complexity for private learning and private data release. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 437–454. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Beimel, A., Nissim, K., Stemmer, U.: Characterizing the sample complexity of private learners. In: ITCS, pp. 97–110 (2013)

    Google Scholar 

  3. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: The SuLQ framework. In: PODS, pp. 128–138. ACM (2005)

    Google Scholar 

  4. Blum, A., Ligett, K., Roth, A.: A learning theory approach to noninteractive database privacy. J. ACM 60(2), 12:1–12:25 (2013)

    Google Scholar 

  5. Chaudhuri, K., Hsu, D.: Sample complexity bounds for differentially private learning. In: COLT, vol. 19, pp. 155–186 (2011)

    Google Scholar 

  6. De, A.: Lower bounds in differential privacy. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 321–338. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: Privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Dwork, C., Lei, J.: Differential privacy and robust statistics. In: STOC 2009, pp. 371–380. ACM, New York (2009)

    Google Scholar 

  9. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Dwork, C., Naor, M., Reingold, O., Rothblum, G., Vadhan, S.: On the complexity of differentially private data release. In: STOC, pp. 381–390. ACM (2009)

    Google Scholar 

  11. Gupta, A., Hardt, M., Roth, A., Ullman, J.: Privately releasing conjunctions and the statistical query barrier. In: STOC, pp. 803–812. ACM, New York (2011)

    Google Scholar 

  12. Hardt, M., Talwar, K.: On the geometry of differential privacy. In: STOC, pp. 705–714 (2010)

    Google Scholar 

  13. Hardt, M.A.W.: A Study of Privacy and Fairness in Sensitive Data Analysis. PhD thesis, Princeton University (2011)

    Google Scholar 

  14. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What can we learn privately? In: FOCS, pp. 531–540. IEEE Computer Society (2008)

    Google Scholar 

  15. Kearns, M.J.: Efficient noise-tolerant learning from statistical queries. Journal of the ACM 45(6), 983–1006 (1998); Preliminary version in Proceedings of STOC 1993

    Google Scholar 

  16. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS, pp. 94–103. IEEE (2007)

    Google Scholar 

  17. Roth, A.: Differential privacy and the fat-shattering dimension of linear queries. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM 2010. LNCS, vol. 6302, pp. 683–695. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Smith, A., Thakurta, A.: Differentially private feature selection via stability arguments, and the robustness of the lasso. Manuscript (2012)

    Google Scholar 

  19. Ullman, J.: Answering n2 + o(1) counting queries with differential privacy is hard. CoRR, abs/1207.6945 (2012)

    Google Scholar 

  20. Ullman, J., Vadhan, S.: PCPs and the hardness of generating private synthetic data. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 400–416. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27, 1134–1142 (1984)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beimel, A., Nissim, K., Stemmer, U. (2013). Private Learning and Sanitization: Pure vs. Approximate Differential Privacy. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2013 2013. Lecture Notes in Computer Science, vol 8096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40328-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40328-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40327-9

  • Online ISBN: 978-3-642-40328-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics