Abstract
The aim of the paper is to examine the computational complexity and algorithmics of enumeration, the task to output all solutions of a given problem, from the point of view of parameterized complexity. First we define formally different notions of efficient enumeration in the context of parameterized complexity. Second we show how different algorithmic paradigms can be used in order to get parameter-efficient enumeration algorithms in a number of examples. These paradigms use well-known principles from the design of parameterized decision as well as enumeration techniques, like for instance kernelization and self-reducibility. The concept of kernelization, in particular, leads to a characterization of fixed-parameter tractable enumeration problems.
Supported by a Campus France/DAAD Procope grant, Campus France Projet No 28292TE, DAAD Projekt-ID 55892324.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Creignou, N., Hébrard, J.-J.: On generating all solutions of generalized satisfiability problems. Theoretical Informatics and Applications 31(6), 499–511 (1997)
Creignou, N., Meier, A., Müller, J.-S., Schmidt, J., Vollmer, H.: Paradigms for parameterized enumeration. CoRR, arXiv:1306.2171 (2013)
Creignou, N., Olive, F., Schmidt, J.: Enumerating all solutions of a Boolean CSP by non-decreasing weight. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 120–133. Springer, Heidelberg (2011)
Damaschke, P.: Parameterized enumeration, transversals, and imperfect phylogeny reconstruction. TCS 351(3), 337–350 (2006)
Fernau, H.: On parameterized enumeration. Computing and Combinatorics (2002)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all maximal independent sets. IPL 27(3), 119–123 (1988)
Khuller, S., Vazirani, V.V.: Planar graph coloring is not self-reducible, assuming P ≠ NP. TCS 88(1), 183–189 (1991)
Kratsch, S., Marx, D., Wahlström, M.: Parameterized complexity and kernelizability of max ones and exact ones problems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 489–500. Springer, Heidelberg (2010)
Marx, D.: Parameterized complexity of constraint satisfaction problems. Computational Complexity (14), 153–183 (2005)
Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to horn and binary clauses. In: Proc. SAT (2004)
Nordh, G., Zanuttini, B.: Frozen boolean partial co-clones. In: Proc. ISMVL, pp. 120–125 (2009)
Samer, M., Szeider, S.: Backdoor trees. In: Proc. AAAI, pp. 363–368. AAAI Press (2008)
Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. STOC, pp. 216–226. ACM Press (1978)
Schmidt, J.: Enumeration: Algorithms and complexity. Master’s thesis, Leibniz Universität Hannover (2009)
Schnorr, C.P.: Optimal algorithms for self-reducible problems. In: Proc. ICALP, pp. 322–337 (1976)
Szeider, S.: The parameterized complexity of k-flip local search for SAT and MAX SAT. Discrete Optimization 8(1), 139–145 (2011)
Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: Proc. IJCAI, pp. 1173–1178 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Creignou, N., Meier, A., Müller, JS., Schmidt, J., Vollmer, H. (2013). Paradigms for Parameterized Enumeration. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-40313-2_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40312-5
Online ISBN: 978-3-642-40313-2
eBook Packages: Computer ScienceComputer Science (R0)