Nothing Special   »   [go: up one dir, main page]

Skip to main content

Paradigms for Parameterized Enumeration

  • Conference paper
Mathematical Foundations of Computer Science 2013 (MFCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8087))

Abstract

The aim of the paper is to examine the computational complexity and algorithmics of enumeration, the task to output all solutions of a given problem, from the point of view of parameterized complexity. First we define formally different notions of efficient enumeration in the context of parameterized complexity. Second we show how different algorithmic paradigms can be used in order to get parameter-efficient enumeration algorithms in a number of examples. These paradigms use well-known principles from the design of parameterized decision as well as enumeration techniques, like for instance kernelization and self-reducibility. The concept of kernelization, in particular, leads to a characterization of fixed-parameter tractable enumeration problems.

Supported by a Campus France/DAAD Procope grant, Campus France Projet No 28292TE, DAAD Projekt-ID 55892324.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Creignou, N., Hébrard, J.-J.: On generating all solutions of generalized satisfiability problems. Theoretical Informatics and Applications 31(6), 499–511 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Creignou, N., Meier, A., Müller, J.-S., Schmidt, J., Vollmer, H.: Paradigms for parameterized enumeration. CoRR, arXiv:1306.2171 (2013)

    Google Scholar 

  3. Creignou, N., Olive, F., Schmidt, J.: Enumerating all solutions of a Boolean CSP by non-decreasing weight. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 120–133. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Damaschke, P.: Parameterized enumeration, transversals, and imperfect phylogeny reconstruction. TCS 351(3), 337–350 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fernau, H.: On parameterized enumeration. Computing and Combinatorics (2002)

    Google Scholar 

  6. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)

    Google Scholar 

  7. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all maximal independent sets. IPL 27(3), 119–123 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Khuller, S., Vazirani, V.V.: Planar graph coloring is not self-reducible, assuming P ≠ NP. TCS 88(1), 183–189 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kratsch, S., Marx, D., Wahlström, M.: Parameterized complexity and kernelizability of max ones and exact ones problems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 489–500. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Marx, D.: Parameterized complexity of constraint satisfaction problems. Computational Complexity (14), 153–183 (2005)

    Google Scholar 

  11. Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to horn and binary clauses. In: Proc. SAT (2004)

    Google Scholar 

  12. Nordh, G., Zanuttini, B.: Frozen boolean partial co-clones. In: Proc. ISMVL, pp. 120–125 (2009)

    Google Scholar 

  13. Samer, M., Szeider, S.: Backdoor trees. In: Proc. AAAI, pp. 363–368. AAAI Press (2008)

    Google Scholar 

  14. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. STOC, pp. 216–226. ACM Press (1978)

    Google Scholar 

  15. Schmidt, J.: Enumeration: Algorithms and complexity. Master’s thesis, Leibniz Universität Hannover (2009)

    Google Scholar 

  16. Schnorr, C.P.: Optimal algorithms for self-reducible problems. In: Proc. ICALP, pp. 322–337 (1976)

    Google Scholar 

  17. Szeider, S.: The parameterized complexity of k-flip local search for SAT and MAX SAT. Discrete Optimization 8(1), 139–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: Proc. IJCAI, pp. 1173–1178 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Creignou, N., Meier, A., Müller, JS., Schmidt, J., Vollmer, H. (2013). Paradigms for Parameterized Enumeration. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40313-2_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40312-5

  • Online ISBN: 978-3-642-40313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics