Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evaluation of Position-Constrained Association-Rule-Based Classification for Tree-Structured Data

  • Conference paper
Trends and Applications in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7867))

Included in the following conference series:

Abstract

Tree-structured data is popular in many domains making structural classification an important task. In this paper, a recently proposed structure preserving flat representation is used to generate association rules using itemset mining techniques. The main difference to traditional techniques is that subtrees are constrained by the position in the original tree, and initial associations prior to subtree reconstruction can be based on disconnected subtrees. Imposing the positional constraint on subtreee typically result in a reduces the number of rules generated, especially with greater structural variation among tree instances. This outcome would be desired in the current status of frequent pattern mining, where excessive patterns hinder the practical use of results. However, the question remains whether this reduction comes at a high cost in accuracy and coverage rate reduction. We explore this aspect and compare the approach with a structural classifier based on same subtree type, but not positional constrained in any way. The experiments using publicly available real-world data reveal important differences between the methods and implications when frequent candidate subtrees on which the association rules are based, are not only equivalent structure and node label wise, but also occur at the same position across the tree instances in the database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liu, B., Hsu, W., Ma, Y.: Integrating Classification and Association Rule Mining. In: 4th Int’l Conf. on Knowledge Discovery and Data Mining, pp. 80–86 (1998)

    Google Scholar 

  2. Li, J., Shen, H., Topor, R.W.: Mining the optimal class association rule set. Knowledge-Based Systems 15(7), 399–405 (2002)

    Article  Google Scholar 

  3. Li, W., Han, J., Pei, J.: CMAR:Accurate and efficient classification based on multiple class-association rules. In: IEEE International Conference on Data Mining (ICDM), pp. 369–376 (2001)

    Google Scholar 

  4. Veloso, A., Meira, W., Zaki, M.J.: Lazy Associative Classification. In: 6th IEEE Inetrantional Conference on Data Mining (ICDM), pp. 645–654 (2006)

    Google Scholar 

  5. Hadzic, F., Tan, H., Dillon, T.S.: Mining of Data with Complex Structures. SCI, vol. 333. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  6. Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N.: Freequent Subtree Mining - An Overview. Fundamenta Informaticae - Advances in Mining Graphs, Trees and Sequences 66(1-2), 161–198 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Hadzic, F.: A Structure Preserving Flat Data Format Representation for Tree-Structured Data. In: Cao, L., Huang, J.Z., Bailey, J., Koh, Y.S., Luo, J. (eds.) PAKDD Workshops 2011. LNCS, vol. 7104, pp. 221–233. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Zaki, M.J.: Efficiently mining frequent trees in a forest: algorithms and applications. IEEE TKDE 17(8), 1021–1035 (2005)

    Google Scholar 

  9. Bouchachia, A., Hassler, M.: Classification of XML documents. In: Computational Intelligence and Data Mining, CIDM (2007)

    Google Scholar 

  10. Bringmann, B., Zimmermann, A.: Tree2: decision trees for tree structured data. In: 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD, Berlin, Heidelberg, pp. 46–58 (2005)

    Google Scholar 

  11. Candillier, L., Tellier, I., Torre, F.: Transforming xml trees for efficient classification and clustering. In: 4th International Conference on Initiative for the Evaluation of XML Retrieval, INEX, Berlin, Heidelberg, pp. 469–480 (2006)

    Google Scholar 

  12. Chehreghani, M.H., Chehreghani, M.H., Lucas, C., Rahgozar, M., Ghadimi, E.: Efficient rule based structural algorithms for classification of tree structured data. J. Intelligent Data Analysis 13(1), 165–188 (2009)

    Google Scholar 

  13. Costa, G., Ortale, R., Ritacco, E.: Effective XML classification using content and structural information via rule learning. In: 23rd International Conference on Tools with Artificial Intelligence, ICTAI, Washington DC, USA, pp. 102–109 (2011)

    Google Scholar 

  14. Denoyer, L., Gallinari, P.: Bayesian network model for semi-structured document classification. Journal of Information Processing Management 40(5), 807–827 (2004)

    Article  Google Scholar 

  15. De Knijf, J.: FAT-CAT: Frequent attributes tree based classification. In: Fuhr, N., Lalmas, M., Trotman, A. (eds.) INEX 2006. LNCS, vol. 4518, pp. 485–496. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Wang, J., Karypis, G.: On mining instance-centric classification rules. IEEE Transaction on Knowledge and Data Engineering 18(11), 1497–1511 (2006)

    Article  Google Scholar 

  17. Wang, S., Hong, Y., Yang, J.: XML document classification using closed frequent subtree. In: Bao, Z., Gao, Y., Gu, Y., Guo, L., Li, Y., Lu, J., Ren, Z., Wang, C., Zhang, X. (eds.) WAIM 2012 Workshops. LNCS, vol. 7419, pp. 350–359. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Wu, J.: A framework for learning comprehensible theories in XML document classification. IEEE Transaction on Knowledge and Data Engineering 24(1), 1–14 (2012)

    Article  Google Scholar 

  19. Zaki, M.J., Aggarwal, C.C.: Xrules: An effective algorithm for structural classification of XML data. Machine Learning 62(1-2), 137–170 (2006)

    Article  Google Scholar 

  20. Bui, D.B., Hadzic, F., Potdar, V.: A Framework for Application of Tree-Structured Data Mining to Process Log Analysis. In: Proc. Intelligent Data Engineering and Automated Learning, Brazil (2012)

    Google Scholar 

  21. Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Romero, A.E.: Probabilistic Methods for Structured Document Classification at INEX. Focused Access to XML Documents (2008)

    Google Scholar 

  22. Geng, L., Hamilton, H.J.: Interestingness Measures for Data Mining: A Survey. ACM Computing Surveys 38(3) (2006)

    Google Scholar 

  23. Lenca, P., Meyer, P., Vaillant, B., Lallich, S.: On selecting interestingness measures for association rules: User oriented description and multiple criteria decision aid. European Journal of Operational Research 184(2), 610–626 (2008)

    Article  MATH  Google Scholar 

  24. Wang, K., He, Y., Cheung, D.W.: Mining confident rules without support requirement. In: 10th International Conference on Information and Knowledge Management, pp. 89–96 (2001)

    Google Scholar 

  25. Bras, Y.L., Lenca, P., Lallich, S.: Mining Classification Rules without Support: an Anti-monotone Property of Jaccard Measure. In: Elomaa, T., Hollmén, J., Mannila, H. (eds.) DS 2011. LNCS, vol. 6926, pp. 179–193. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bui, D.B., Hadzic, F., Hecker, M. (2013). Evaluation of Position-Constrained Association-Rule-Based Classification for Tree-Structured Data. In: Li, J., et al. Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7867. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40319-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40319-4_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40318-7

  • Online ISBN: 978-3-642-40319-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics