Nothing Special   »   [go: up one dir, main page]

Skip to main content

Identifying Gene Knockout Strategy Using Bees Hill Flux Balance Analysis (BHFBA) for Improving the Production of Succinic Acid and Glycerol in Saccharomyces cerevisiae

  • Conference paper
Trends and Applications in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7867))

Included in the following conference series:

  • 3606 Accesses

Abstract

Strains of Saccharomyces cerevisiae can be manipulated to improve product yield and growth characteristics. Optimization algorithms are developed to identify the effects of gene knockout on the results. However, this process is often faced the problem of being trapped in local minima and slow convergence due to repetitive iterations of algorithm. In this paper, we proposed Bees Hill Flux Balance Analysis (BHFBA) which is a hybrid of Bees Algorithm, Hill Climbing Algorithm and Flux Balance Analysis to solve the problems and improve the performance in predicting optimal sets of gene deletion for maximizing the growth rate and production yield of desired metabolite. Saccharomyces cerevisiae is the model organism in this paper. The list of knockout genes, growth rate and production yield after the deletion are the results from the experiments. BHFBA performed better in term of computational time, stability and production yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Feist, A.M., Herrgård, M.J., Thiele, I., Reed, J.L., Palsson, B.Ø.: Reconstruction of biochemical networks in microorganisms. Nat. Rev. Microbiol. 72, 129–143 (2009)

    Google Scholar 

  2. Chandran, D., Copeland, W.B., Sleight, S.C., Sauro, H.M.: Mathematical modeling and synthetic biology. Drug Discovery Today Disease Models 5(4), 299–309 (2008)

    Article  Google Scholar 

  3. Burgard, A.P., Pharkya, P., Maranas, C.D.: OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strains optimization. Biotechnol. Bioeng. 84, 647–657 (2003)

    Article  Google Scholar 

  4. Patil, K.R., Rocha, I., Förster, J., Nielsen, J.: Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6, 308 (2005)

    Article  Google Scholar 

  5. Rocha, M., Maia, P., Mendes, R., Pinto, J.P., Ferreira, E.C., Nielsen, J., Patil, K.R., Rocha, I.: Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinformatics 9, 499 (2008)

    Article  Google Scholar 

  6. Pham, D.T., Ghanbarzadeh, A., Koç, E., Otri, S., Zaidi, M.: The bees algorithm – a novel tool for complex optimization problems. In: Proceedings of the Second International Virtual Conference on Intelligent Production Machines and Systems, July 3-14 (2006)

    Google Scholar 

  7. Choon, Y.W., Mohamad, M.S., Deris, S., Chong, C.K., Chai, L.E., Ibrahim, Z., Omatu, S.: Identifying Gene Knockout Strategies Using a Hybrid of Bees Algorithm and Flux Balance Analysis For in silico Optimization of Microbial Strains. In: Omatu, S., Paz Santana, J.F., González, S.R., Molina, J.M., Bernardos, A.M., Rodríguez, J.M.C. (eds.) DCAI. AISC, vol. 151, pp. 371–378. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Pham, D.T., Darwish, A.H., Eldukhri, E.E.: Optimisation of a fuzzy logic controller using the bees algorithm. International Journal of Computer Aided Engineering and Technology 1(2), 250–264 (2006)

    Article  Google Scholar 

  9. Olague, G., Puente, C.: The honeybee search algorithm for three-dimensional reconstruction. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 427–437. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Pham, D.T., Ghanbarzadeh, A.: Multi-objective optimisation using the bees algorithm. Paper in Proceedings of the Third International Virtual Conference on Intelligent Production Machines and Systems, July 2-13 (2007)

    Google Scholar 

  11. Cheng, M.Y., Lien, L.C.: A Hybrid Swarm Intelligence Based Particle Bee Algorithm For Benchmark Functions and Construction Site Layout Optimization. In: Proceedings of the 28th ISARC, Seou, pp. 898–904 (2011)

    Google Scholar 

  12. Forster, J., Famili, I., Fu, P., Palsson, B.Ø., Nielsen, J.: Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253 (2003)

    Article  Google Scholar 

  13. Bohl, K., de Figueiredo, L.F., Hadicke, O., Klamt, S., Kost, C., Schuster, S., Kaleta, C.: CASOP GS: Computing intervention strategies targeted at production improvement in genome-scale metabolic networks. In: The 5th German Conference on Bioinformatics 2010, September 20-22 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choon, Y.W., Mohamad, M.S., Deris, S., Illias, R.M., Chai, L.E., Chong, C.K. (2013). Identifying Gene Knockout Strategy Using Bees Hill Flux Balance Analysis (BHFBA) for Improving the Production of Succinic Acid and Glycerol in Saccharomyces cerevisiae . In: Li, J., et al. Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7867. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40319-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40319-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40318-7

  • Online ISBN: 978-3-642-40319-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics