Nothing Special   »   [go: up one dir, main page]

Skip to main content

Product Feature Summarization by Incorporating Domain Information

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7827))

Included in the following conference series:

Abstract

Feature summarization is an important problem in opinion mining of product review. Current methods mostly cluster feature expressions with unsupervised learning methods based on lexical similarity or context information similarity. Although several semi-supervised methods have been proposed to addressing the problem, their labeled set needs manual definition and requires a professional knowledge to categorize features into same aspect or different aspects. In this paper, we proposed a semi-supervised method that incorporates domain information in web sites to generate labeled set and constructs a novel context information modeling process with EM method to solve the problem. Experimental results show that the proposed method achieves better performance than existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liu, B., Hu, M., Cheng, J.: Opinion Observer: Analyzing and Comparing Opinions on the Web. In: WWW (2005)

    Google Scholar 

  2. Hu, M., Liu, B.: Mining Opinion Features in Customer Reviews. American Association for Artificial Intelligence (2004)

    Google Scholar 

  3. Hu, M., Liu, B.: Mining and Summarizing Customer Reviews. In: KDD (2004)

    Google Scholar 

  4. Harris, Z.S.: Mathematical structures of language. Interscience Tracts in Pure and Applied Mathematics (1968)

    Google Scholar 

  5. Zhai, Z., Liu, B., Xu, H., Jia, P.: Clstering Product Features for Opinion Mining. In: WSDM (2011)

    Google Scholar 

  6. Nigam, K., Mccallum, A.K., Thrun, S., Mitchell, T.: Text Classification from Labeled and Unlabeled Documents using EM. Machine Learning (2009)

    Google Scholar 

  7. Peter, F., Brown, V.J., Della Pietra, V.J., Della Pietra, J.C., Lai, R.L.: Mercer: Class-based n-gram models of natural language. Association for Computational Linguistics (1992)

    Google Scholar 

  8. Lin, D., Wu, X.: Phrase Clustering for Discriminative Learning. In: ACL (2009)

    Google Scholar 

  9. Matsuo, Y., Sakaki, T., Uchiyama, K., Ishizuka, M.: Graph-based Word Clustering using a Web Search Engine. EMNLP (2006)

    Google Scholar 

  10. Lewis, D.D.: Naive (Bayes) at forty: The independence assumption in information retrieval. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 4–15. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. McCallum, A., Nigam, K.: A comparison of event models for naive Bayes text classification. AAAI (1998)

    Google Scholar 

  12. McCallum, A.K., Nigam, K.: Employing EM and Pool-Based Active Learning for Text Classification. In: ICML (1998)

    Google Scholar 

  13. Liu, B.: Web data mining: Exploring hyperlinks, contents, and usage data. Springer (2006)

    Google Scholar 

  14. Carenini, G., Ng, R.T., Zwart, E.: Extracting Knowledge from Evaluative Text. In: K-CAP (2005)

    Google Scholar 

  15. Lee, L.: Measures of Distributional Similarity ACL (1999)

    Google Scholar 

  16. Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. Journal of Machine Learning Research (2003)

    Google Scholar 

  17. Guo, H., Zhu, H., Guo, Z., Zhang, X., Su, Z.: Product Feature Categorization with Multilevel Latent Semantic Association. In: CIKM (2009)

    Google Scholar 

  18. Patrick, P., Eric, C., Arkady, B., Ana-Maria, P., Vishnu, V.: Web-scale distributional similarity and entity set expansion. In: ACL (2009)

    Google Scholar 

  19. Popescu, A.-M., Etzioni, O.: Extracting Product Features and Opinions from Reviews. In: HLT-EMNLP (2005)

    Google Scholar 

  20. Wang, H., Lu, Y., Zhai, C.: Latent aspect rating analysis on review text data: a rating regression approach. In: SIGKDD (2010)

    Google Scholar 

  21. Thad, H., Daniel, R.: Lexical semantic relatedness with random graph walks. EMNLP (2007)

    Google Scholar 

  22. Mukherjee, A., Liu, B.: Aspect extraction through Semi-Supervised modeling. In: ACL (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, T., Cai, Y., Zhang, G., Liu, Y., Chen, J., Min, H. (2013). Product Feature Summarization by Incorporating Domain Information. In: Hong, B., Meng, X., Chen, L., Winiwarter, W., Song, W. (eds) Database Systems for Advanced Applications. DASFAA 2013. Lecture Notes in Computer Science, vol 7827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40270-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40270-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40269-2

  • Online ISBN: 978-3-642-40270-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics