Nothing Special   »   [go: up one dir, main page]

Skip to main content

Interactive Image Segmentation via Graph Clustering and Synthetic Coordinates Modeling

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2013)

Abstract

We propose a method for interactive image segmentation. We construct a weighted graph that represents the superpixels and the connections between them. An efficient algorithm for graph clustering based on synthetic coordinates is used yielding an initial map of classified pixels. The proposed method minimizes a min-max Bayesian criterion that has been successfully used on image segmentation problem taking into account visual information as well as the given markers. Experimental results and comparisons with other methods demonstrate the high performance of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A.: Geodesic star convexity for interactive image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 3129–3136 (2010)

    Google Scholar 

  2. Zhao, Y., Zhu, S., Luo, S.: Co3 for ultra-fast and accurate interactive segmentation. In: Proceedings of the International Conference on Multimedia, pp. 93–102. ACM (2010)

    Google Scholar 

  3. Unger, M., Pock, T., Trobin, W., Cremers, D., Bischof, H.: Tvseg-interactive total variation based image segmentation. In: British Machine Vision Conference, BMVC (2008)

    Google Scholar 

  4. Grinias, I., Komodakis, N., Tziritas, G.: Flooding and MRF-based algorithms for interactive segmentation. In: International Conference on Pattern Recognition, ICPR, pp. 3943–3946 (2010)

    Google Scholar 

  5. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. International Journal of Computer Vision 59, 167–181 (2004)

    Article  Google Scholar 

  6. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A decentralized network coordinate system. In: Proceedings of the ACM SIGCOMM 2004 Conference, vol. 34, pp. 15–26 (2004)

    Google Scholar 

  7. Panagiotakis, C., Papadakis, H., Grinias, I., Komodakis, N., Fragopoulou, P., Tziritas, G.: Interactive image segmentation based on synthetic graph coordinates. In: Pattern Recognition (accepted, 2013)

    Google Scholar 

  8. Panagiotakis, C., Grinias, I., Tziritas, G.: Natural image segmentation based on tree equipartition, bayesian flooding and region merging. IEEE Transactions on Image Processing 20, 2276–2287 (2011)

    Article  MathSciNet  Google Scholar 

  9. Mallows, C.: A note on asymptotic joint normality. The Annals of Mathematical Statistics 43, 508–515 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Papadakis, H., Panagiotakis, C., Fragopoulou, P.: Local community finding using synthetic coordinates. In: Park, J.J., Yang, L.T., Lee, C. (eds.) FutureTech 2011, Part II. CCIS, vol. 185, pp. 9–15. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Papadakis, H., Panagiotakis, C., Fragopoulou, P.: Locating communities on real dataset graphs using synthetic coordinates. Parallel Processing Letters, PPL 20 (2012)

    Google Scholar 

  12. Komodakis, N., Tziritas, G.: Approximate labeling via graph cuts based on linear programming. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1436–1453 (2007)

    Article  Google Scholar 

  13. Zhao, Y., Nie, X., Duan, Y., Huang, Y., Luo, S.: A benchmark for interactive image segmentation algorithms. In: IEEE Workshop on Person-Oriented Vision, POV, pp. 33–38 (2011)

    Google Scholar 

  14. Yao, B., Yang, X., Zhu, S.-C.: Introduction to a large-scale general purpose ground truth database: Methodology, annotation tool and benchmarks. In: Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679, pp. 169–183. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watersheds: A new image segmentation framework extending graph cuts, random walker and optimal spanning forest. In: International Conference on Computer Vision, pp. 731–738 (2009)

    Google Scholar 

  16. Grady, L.: Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 1768–1783 (2006)

    Article  Google Scholar 

  17. Noma, A., Graciano, A., Consularo, L., Cesar Jr., R., Bloch, I.: A new algorithm for interactive structural image segmentation. arXiv preprint arXiv:0805.1854 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Panagiotakis, C., Papadakis, H., Grinias, E., Komodakis, N., Fragopoulou, P., Tziritas, G. (2013). Interactive Image Segmentation via Graph Clustering and Synthetic Coordinates Modeling. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40261-6_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40261-6_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40260-9

  • Online ISBN: 978-3-642-40261-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics