Abstract
The quantum Jensen-Shannon divergence kernel [1] was recently introduced in the context of unattributed graphs where it was shown to outperform several commonly used alternatives. In this paper, we study the separability properties of this kernel and we propose a way to compute a low-dimensional kernel embedding where the separation of the different classes is enhanced. The idea stems from the observation that the multidimensional scaling embeddings on this kernel show a strong horseshoe shape distribution, a pattern which is known to arise when long range distances are not estimated accurately. Here we propose to use Isomap to embed the graphs using only local distance information onto a new vectorial space with a higher class separability. The experimental evaluation shows the effectiveness of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rossi, L., Torsello, A., Hancock, E.R.: A continuous-time quantum walk kernel for unattributed graphs. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 101–110. Springer, Heidelberg (2013)
Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape matching. International Journal of Computer Vision 35, 13–32 (1999)
Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabási, A.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)
Schölkopf, B., Smola, A.J.: Learning with kernels: Support vector machines, regularization, optimization, and beyond. MIT press (2001)
Gaertner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003)
Borgwardt, K., Kriegel, H.: Shortest-path kernels on graphs. In: Fifth IEEE International Conference on Data Mining, p. 8. IEEE (2005)
Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: Proceedings of the International Workshop on Artificial Intelligence and Statistics (2009)
Haussler, D.: Convolution kernels on discrete structures. Technical report, UC Santa Cruz (1999)
Farhi, E., Gutmann, S.: Quantum computation and decision trees. Physical Review A 58, 915 (1998)
Emms, D., Wilson, R., Hancock, E.: Graph embedding using a quasi-quantum analogue of the hitting times of continuous time quantum walks. Quantum Information & Computation 9, 231–254 (2009)
Rossi, L., Torsello, A., Hancock, E.R.: Approximate axial symmetries from continuous time quantum walks. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR&SPR 2012. LNCS, vol. 7626, pp. 144–152. Springer, Heidelberg (2012)
Lamberti, P., Majtey, A., Borras, A., Casas, M., Plastino, A.: Metric character of the quantum Jensen-Shannon divergence. Physical Review A 77, 052311 (2008)
Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cambridge university press (2010)
Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)
Czaja, W., Ehler, M.: Schroedinger eigenmaps for the analysis of biomedical data. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 1274–1280 (2013)
Kendall, D.G.: Abundance matrices and seriation in archaeology. Probability Theory and Related Fields 17, 104–112 (1971)
Briët, J., Harremoës, P.: Properties of classical and quantum jensen-shannon divergence. Physical review A 79, 052311 (2009)
Nayar, S., Nene, S., Murase, H.: Columbia object image library (coil 100). Technical report, Tech. Report No. CUCS-006-96. Department of Comp. Science, Columbia University (1996)
Torsello, A., Rossi, L.: Supervised learning of graph structure. In: Pelillo, M., Hancock, E.R. (eds.) SIMBAD 2011. LNCS, vol. 7005, pp. 117–132. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rossi, L., Torsello, A., Hancock, E.R. (2013). Manifold Learning and the Quantum Jensen-Shannon Divergence Kernel. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40261-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-40261-6_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40260-9
Online ISBN: 978-3-642-40261-6
eBook Packages: Computer ScienceComputer Science (R0)