Nothing Special   »   [go: up one dir, main page]

Skip to main content

Manifold Learning and the Quantum Jensen-Shannon Divergence Kernel

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8047))

Included in the following conference series:

  • 2641 Accesses

Abstract

The quantum Jensen-Shannon divergence kernel [1] was recently introduced in the context of unattributed graphs where it was shown to outperform several commonly used alternatives. In this paper, we study the separability properties of this kernel and we propose a way to compute a low-dimensional kernel embedding where the separation of the different classes is enhanced. The idea stems from the observation that the multidimensional scaling embeddings on this kernel show a strong horseshoe shape distribution, a pattern which is known to arise when long range distances are not estimated accurately. Here we propose to use Isomap to embed the graphs using only local distance information onto a new vectorial space with a higher class separability. The experimental evaluation shows the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rossi, L., Torsello, A., Hancock, E.R.: A continuous-time quantum walk kernel for unattributed graphs. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 101–110. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape matching. International Journal of Computer Vision 35, 13–32 (1999)

    Article  Google Scholar 

  3. Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabási, A.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  4. Schölkopf, B., Smola, A.J.: Learning with kernels: Support vector machines, regularization, optimization, and beyond. MIT press (2001)

    Google Scholar 

  5. Gaertner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Borgwardt, K., Kriegel, H.: Shortest-path kernels on graphs. In: Fifth IEEE International Conference on Data Mining, p. 8. IEEE (2005)

    Google Scholar 

  7. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: Proceedings of the International Workshop on Artificial Intelligence and Statistics (2009)

    Google Scholar 

  8. Haussler, D.: Convolution kernels on discrete structures. Technical report, UC Santa Cruz (1999)

    Google Scholar 

  9. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Physical Review A 58, 915 (1998)

    Article  MathSciNet  Google Scholar 

  10. Emms, D., Wilson, R., Hancock, E.: Graph embedding using a quasi-quantum analogue of the hitting times of continuous time quantum walks. Quantum Information & Computation 9, 231–254 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Rossi, L., Torsello, A., Hancock, E.R.: Approximate axial symmetries from continuous time quantum walks. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR&SPR 2012. LNCS, vol. 7626, pp. 144–152. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Lamberti, P., Majtey, A., Borras, A., Casas, M., Plastino, A.: Metric character of the quantum Jensen-Shannon divergence. Physical Review A 77, 052311 (2008)

    Article  Google Scholar 

  13. Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cambridge university press (2010)

    Google Scholar 

  14. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  15. Czaja, W., Ehler, M.: Schroedinger eigenmaps for the analysis of biomedical data. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 1274–1280 (2013)

    Article  Google Scholar 

  16. Kendall, D.G.: Abundance matrices and seriation in archaeology. Probability Theory and Related Fields 17, 104–112 (1971)

    MathSciNet  Google Scholar 

  17. Briët, J., Harremoës, P.: Properties of classical and quantum jensen-shannon divergence. Physical review A 79, 052311 (2009)

    Article  Google Scholar 

  18. Nayar, S., Nene, S., Murase, H.: Columbia object image library (coil 100). Technical report, Tech. Report No. CUCS-006-96. Department of Comp. Science, Columbia University (1996)

    Google Scholar 

  19. Torsello, A., Rossi, L.: Supervised learning of graph structure. In: Pelillo, M., Hancock, E.R. (eds.) SIMBAD 2011. LNCS, vol. 7005, pp. 117–132. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rossi, L., Torsello, A., Hancock, E.R. (2013). Manifold Learning and the Quantum Jensen-Shannon Divergence Kernel. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40261-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40261-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40260-9

  • Online ISBN: 978-3-642-40261-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics