Nothing Special   »   [go: up one dir, main page]

Skip to main content

Outlines of Objects Detection by Analogy

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8047))

Included in the following conference series:

Abstract

In this paper we propose a new technique for outlines of objects detection. We exploit the set of contours computed using the image analogies principle. A set of artificial patterns are used to locate contours of any query image, each one permits the location of contours corresponding to a specific intensity variation. We studied these contours and a theoretical foundation is proposed to explain the slow motion of these contours around regions boundaries. Experiments are conducted and the obtained results are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (June 2007)

    Google Scholar 

  2. Ashikhmin, M.: Fast texture transfer. IEEE Computer Graphics and Applications 23(4), 38–43 (2003)

    Article  Google Scholar 

  3. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration, In. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  4. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour Detection and Hierarchical Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(5), 898–916 (2011)

    Article  Google Scholar 

  5. Cheng, H.D., Jiang, X.H., Sun, Y., Wang, J.L.: Color image segmentation: advances and prospects. Pattern Recognition 34, 2259–2281 (2001)

    Article  MATH  Google Scholar 

  6. Cheng, L., Vishwanathan, S.V.N., Zhang, X.: Consistent image analogies using semi-supervised learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008 (2008)

    Google Scholar 

  7. De Winter, J., Wagemans, J.: Segmentation of object outlines into parts: A large-scale integrative study. Cognition 99, 275–325 (2006)

    Article  Google Scholar 

  8. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning Low-Level Vision. International Journal of Computer Vision 40(1) (2000)

    Google Scholar 

  9. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Seitz, S.M.: Image analogies. In: SIGGRAPH Conference Proceedings, pp. 327–340 (2001)

    Google Scholar 

  10. Hertzmann, A., Oliver, N., Curless, B., Seitz, S.M.: Curve analogies. In: Proc. 13th Eurographics Workshop on Rendering, Pisa, Italy, pp. 233–245 (2002)

    Google Scholar 

  11. Lackey, J.B., Colagrosso, M.D.: Supervised segmentation of visible human data with image analogies. In: Proceedings of the International Conference on Machine Learning; Models, Technologies and Applications (2004)

    Google Scholar 

  12. Larabi, S., Robertson, N.M.: Contour detection by image analogies. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Fowlkes, C., Wang, S., Choi, M.-H., Mantler, S., Schulze, J., Acevedo, D., Mueller, K., Papka, M. (eds.) ISVC 2012, Part II. LNCS, vol. 7432, pp. 430–439. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In: Proc. 8th Int’l Conf. Computer Vision (2001)

    Google Scholar 

  14. Sykora, D., Burianek, J., Zara, J.: Unsupervised colorization of black-and-white cartoons. In: Proceedings of the 3rd Int. Symp. Non-photorealistic Animation and Rendering, pp. 121–127 (2004)

    Google Scholar 

  15. Wang, G., Wong, T., Heng, P.: Deringing cartoons by image analogies. ACM Transactions on Graphics 25(4), 1360–1379 (2006)

    Article  Google Scholar 

  16. Zhanga, H., Frittsb, J.E., Goldmana, S.A.: Image segmentation evaluation: A survey of unsupervised methods. Computer Vision and Image Understanding 110(2), 260–280 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bellili, A., Larabi, S., Robertson, N.M. (2013). Outlines of Objects Detection by Analogy. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40261-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40261-6_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40260-9

  • Online ISBN: 978-3-642-40261-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics