Nothing Special   »   [go: up one dir, main page]

Skip to main content

Geodetic Distance Queries on R-Trees for Indexing Geographic Data

  • Conference paper
Advances in Spatial and Temporal Databases (SSTD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8098))

Included in the following conference series:

Abstract

Geographic data have become abundantly available in the recent years due to the widespread deployment of GPS devices for example in mobile phones. At the same time, the data covered are no longer restricted to the local area of a single application, but often span the whole world. However, we do still use very rough approximations when indexing these data, which are usually stored and indexed using an equirectangular projection. When distances are measured using Euclidean distance in this projection, a non-neglibile error may occur. Databases are lacking good support for accelerated nearest neighbor queries and range queries in such datasets for the much more appropriate geodetic (great-circle) distance. In this article, we will show two approaches how a widely known spatial index structure – the R-tree – can be easily used for nearest neighbor queries with the geodetic distance, with no changes to the actual index structure. This allows existing database indexes immediately to be used with low distortion and highly efficient nearest neighbor queries and radius queries as well as window queries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sinnott, R.: Virtues of the haversine. Sky and Telescope 68, 158–159 (1984)

    Google Scholar 

  2. Vincenty, T.: Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey Review 23(176), 88–93 (1975)

    Google Scholar 

  3. Finkel, R.A., Bentley, J.L.: Quad trees. A data structure for retrieval on composite keys. Acta Informatica 4(1), 1–9 (1974)

    Article  MATH  Google Scholar 

  4. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kunszt, P., Szalay, A., Thakar, A.: The hierarchical triangular mesh. Mining the Sky, 631–637 (2001)

    Google Scholar 

  6. Morton, G.M.: A computer oriented geodetic data base and a new technique in file sequencing. Technical report, International Business Machines Co. (1966)

    Google Scholar 

  7. Guttman, A.: R-Trees: A dynamic index structure for spatial searching. In: Proc. SIGMOD, pp. 47–57 (1984)

    Google Scholar 

  8. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-Tree: An efficient and robust access method for points and rectangles. In: Proc. SIGMOD, pp. 322–331 (1990)

    Google Scholar 

  9. White, D.A., Jain, R.: Similarity indexing with the SS-tree. In: Proc. ICDE, pp. 516–523 (1996)

    Google Scholar 

  10. Ciaccia, P., Patella, M., Zezula, P.: M-Tree: an efficient access method for similarity search in metric spaces. In: Proc. VLDB, pp. 426–435 (1997)

    Google Scholar 

  11. Kurniawati, R., Jin, J.S., Shepherd, J.A.: The SS+-tree: An improved index structure for similarity searches in a high-dimensional feature space. In: Proc. SPIE, vol. 3022, pp. 110–120 (1997)

    Google Scholar 

  12. Ciaccia, P., Patella, M.: Bulk loading the M-tree. In: Proc. ADC (1998)

    Google Scholar 

  13. Traina Jr., C., Traina, A., Seeger, B., Faloutsos, C.: Slim-trees: High performance metric trees minimizing overlap between nodes. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 51–65. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Traina Jr, C., Traina, A., Faloutsos, C., Seeger, B.: Fast indexing and visualization of metric data sets using slim-trees. IEEE TKDE 14(2), 244–260 (2002)

    Google Scholar 

  15. Katayama, N., Satoh, S.: The SR-tree: An index structure for high-dimensional nearest neighbor queries. In: Proc. SIGMOD, pp. 369–380 (1997)

    Google Scholar 

  16. Microsoft Corporation: Whitepaper New Spatial Features in SQL Server 2012 (2012)

    Google Scholar 

  17. Fang, Y., Friedman, M., Nair, G., Rys, M., Schmid, A.E.: Spatial indexing in microsoft sql server 2008. In: Proc. SIGMOD, pp. 1207–1216 (2008)

    Google Scholar 

  18. PostGIS project: Postgis 2.0 manual, http://postgis.net/docs/manual-2.0/

  19. IBM Informix: IBM Informix Geodetic DataBlade Module User’s Guide

    Google Scholar 

  20. Lukatela, H.: Hipparchus geopositioning model: An overview. In: Proc. Auto. Cartography, vol. 8, pp. 87–96 (1987)

    Google Scholar 

  21. Kothuri, R.K.V., Ravada, S., Abugov, D.: Quadtree and R-tree indexes in oracle spatial: a comparison using GIS data. In: Proc. SIGMOD, pp. 546–557 (2002)

    Google Scholar 

  22. Hu, Y., Ravada, S., Anderson, R.: Geodetic point-in-polygon query processing in oracle spatial. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp. 297–312. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Achtert, E., Kriegel, H.P., Schubert, E., Zimek, A.: Interactive data mining with 3d-parallel-coordinate-trees. In: Proc. SIGMOD (2013)

    Google Scholar 

  24. Hu, Y., Ravada, S., Anderson, R., Bamba, B.: Topological relationship query processing for complex regions in oracle spatial. In: Proc. ACM GIS, pp. 3–12 (2012)

    Google Scholar 

  25. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: Proc. VLDB, pp. 194–205 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schubert, E., Zimek, A., Kriegel, HP. (2013). Geodetic Distance Queries on R-Trees for Indexing Geographic Data. In: Nascimento, M.A., et al. Advances in Spatial and Temporal Databases. SSTD 2013. Lecture Notes in Computer Science, vol 8098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40235-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40235-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40234-0

  • Online ISBN: 978-3-642-40235-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics