Abstract
In recent years, services that process user-generated data have become increasingly popular due to the spreading of social technologies in online applications. The data being processed by these services are mostly considered sensitive personal information, which raises privacy concerns. Hence, privacy related problems have been addressed by the research community and privacy-preserving solutions based on cryptography, like [1-5], have been proposed. Unfortunately, the existing solutions consider static settings, where the computation is executed only once for a fixed number of users, while in practice applications have a dynamic environment, where users come and leave between the executions. In this work we show that user-data oriented services, which are privacy-preserving in static settings, leak information in dynamic environments. We then present building blocks to be used in the design of privacy-preserving cryptographic protocols for dynamic settings. We also present realizations of our ideas in two different attacker models, namely semi-honest and malicious.
Chapter PDF
Similar content being viewed by others
Keywords
References
McSherry, F., Mironov, I.: Differentially Private Recommender Systems: Building Privacy into the Netflix Prize Contenders. In: Elder IV, J.F., Fogelman-Soulié, F., Flach, P.A., Zaki, M.J. (eds.) KDD, pp. 627–636. ACM (2009)
Beye, M., Erkin, Z., Lagendijk, R.: Efficient privacy preserving K-means clustering in a three-party setting. In: IEEE International Workshop on Information Forensics and Security, WIFS, pp. 1–6. IEEE (2011)
Erkin, Z., Veugen, T., Toft, T., Lagendijk, R.: Generating Private Recommendations Efficiently Using Homomorphic Encryption and Data Packing. IEEE Transactions on Information Forensics and Security 7, 1053–1066 (2012)
Canny, J.: Collaborative filtering with privacy. In: IEEE Symposium on Security and Privacy, pp. 45–57. IEEE, IEEE Computer Society (2002)
Jagannathan, G., Pillaipakkamnatt, K., Wright, R.: A new privacy-preserving distributed k-clustering algorithm. In: Proceedings of the Sixth SIAM International Conference on Data Mining, pp. 492–496 (2006)
Resnick, P., Varian, H.R.: Recommender Systems - Introduction to the Special Section. Commun. ACM 40, 56–58 (1997)
Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation systems. Commun. ACM 43, 45–48 (2000)
Kacprzyk, J.: Group decision making with a fuzzy linguistic majority. Fuzzy Sets and Systems 18, 105–118 (1986)
Mathes, A.: Folksonomies – cooperative classification and communication through shared metadata. Computer Mediated Communication 47 (2004)
Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the Privacy Preserving Properties of Random Data Perturbation Techniques. In: ICDM, pp. 99–106. IEEE Computer Society (2003)
Zhou, B., Pei, J., Luk, W.S.: A brief survey on anonymization techniques for privacy preserving publishing of social network data. SIGKDD Explorations 10, 12–22 (2008)
Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 160–164. IEEE Computer Society, Washington, DC (1982)
Steiner, M., Tsudik, G., Waidner, M.: CLIQUES: a new approach to group key agreement. In: Papazoglou, M.P., Takizawa, M., Kramer, B., Chanson, S. (eds.) ICDCS, pp. 380–387 (1998)
Wu, S., Chen, K.: An Efficient Key-Management Scheme for Hierarchical Access Control in E-Medicine System. Journal of Medical Systems 36, 2325–2337 (2012)
Xiao, X., Tao, Y.: M-invariance: towards privacy preserving re-publication of dynamic datasets. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 689–700. ACM (2007)
Bu, Y., Fu, A.W.C., Wong, R.C.W., Chen, L., Li, J.: Privacy preserving serial data publishing by role composition. PVLDB 1, 845–856 (2008)
Bhagat, S., Cormode, G., Krishnamurthy, B., Divesh, S.: Prediction promotes privacy in dynamic social networks. In: Proceedings of the 3rd Conference on Online Social Networks, WOSN 2010, p. 6. USENIX Association, Berkeley (2010)
Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer, Heidelberg (2001)
Nishide, T., Sakurai, K.: Distributed Paillier Cryptosystem without Trusted Dealer. In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS, vol. 6513, pp. 44–60. Springer, Heidelberg (2011)
Shamir, A.: How to Share a Secret. Commun. ACM 22, 612–613 (1979)
Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)
Hazay, C., Lindell, Y.: Sigma Protocols and Efficient Zero-Knowledge. In: Efficient Secure Two-Party Protocols. Information Security and Cryptography, pp. 147–175. Springer, Heidelberg (2010)
Blum, M., Feldman, P., Micali, S.: Non-Interactive Zero-Knowledge and Its Applications (Extended Abstract). In: Simon, J. (ed.) STOC, pp. 103–112. ACM (1988)
Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty Computation from Threshold Homomorphic Encryption. Cryptology ePrint Archive, Report 2000/055 (2000), http://eprint.iacr.org/2000/055
Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty Computation from Threshold Homomorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)
Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant number of rounds of interaction. In: Proceedings of the Eighth Annual ACM Symposium on Principles of Distributed Computing, pp. 201–209. ACM (1989)
Davies, R.: Exclusive OR (XOR) and hardware random number generators (2002), http://www.robertnz.net/
Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key management–part 1: General (revision 3). NIST special publication 800-57 (2012)
Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally Secure Constant-Rounds Multi-party Computation for Equality, Comparison, Bits and Exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)
Peng, K., Bao, F.: Efficient Vote Validity Check in Homomorphic Electronic Voting. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 202–217. Springer, Heidelberg (2009)
Guillou, L.C., Quisquater, J.-J.: A “Paradoxical” identity-based signature scheme resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 216–231. Springer, Heidelberg (1990)
Catrina, O., de Hoogh, S.: Improved Primitives for Secure Multiparty Integer Computation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 182–199. Springer, Heidelberg (2010)
Chaum, D.: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Commun. ACM 24, 84–88 (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kononchuk, D., Erkin, Z., van der Lubbe, J.C.A., Lagendijk, R.L. (2013). Privacy-Preserving User Data Oriented Services for Groups with Dynamic Participation. In: Crampton, J., Jajodia, S., Mayes, K. (eds) Computer Security – ESORICS 2013. ESORICS 2013. Lecture Notes in Computer Science, vol 8134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40203-6_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-40203-6_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40202-9
Online ISBN: 978-3-642-40203-6
eBook Packages: Computer ScienceComputer Science (R0)