Nothing Special   »   [go: up one dir, main page]

Skip to main content

Real-Time Vector Automata

  • Conference paper
Fundamentals of Computation Theory (FCT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8070))

Included in the following conference series:

Abstract

We study the computational power of real-time finite automata that have been augmented with a vector of dimension k, and programmed to multiply this vector at each step by an appropriately selected k×k matrix. Only one entry of the vector can be tested for equality to 1 at any time. Classes of languages recognized by deterministic, nondeterministic, and “blind” versions of these machines are studied and compared with each other, and the associated classes for multicounter automata, automata with multiplication, and generalized finite automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fischer, P.C., Meyer, A.R., Rosenberg, A.L.: Counter machines and counter languages. Mathematical Systems Theory 2(3), 265–283 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  2. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter machines. Theoretical Computer Science 7, 311–324 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ibarra, O.H., Sahni, S.K., Kim, C.E.: Finite automata with multiplication. Theoretical Computer Science 2(3), 271 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Turakainen, P.: Generalized automata and stochastic languages. Proceedings of the American Mathematical Society 21, 303–309 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yakaryılmaz, A.: Superiority of one-way and realtime quantum machines. RAIRO - Theoretical Informatics and Applications 46(4), 615–641 (2012)

    Article  MATH  Google Scholar 

  6. Laing, R.: Realization and complexity of commutative events. Technical report, University of Michigan (1967)

    Google Scholar 

  7. Fischer, P.C., Meyer, A.R., Rosenberg, A.L.: Real time counter machines. In: Proceedings of the 8th Annual Symposium on Switching and Automata Theory (SWAT 1967). FOCS 1967, pp. 148–154. IEEE Computer Society, Washington, DC (1967)

    Google Scholar 

  8. Diêu, P.D.: Criteria of representability of languages in probabilistic automata. Cybernetics and Systems Analysis 13(3), 352–364 (1977); Translated from Kibernetika (3), 39–50, (May-June 1977)

    Google Scholar 

  9. Freivalds, R.: Probabilistic two-way machines. In: Proceedings of the International Symposium on Mathematical Foundations of Computer Science, pp. 33–45 (1981)

    Google Scholar 

  10. Dwork, C., Stockmeyer, L.: Finite state verifiers I: The power of interaction. Journal of the ACM 39(4), 800–828 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ravikumar, B.: Some observations on 2-way probabilistic finite automata. In: Shyamasundar, R.K. (ed.) FSTTCS 1992. LNCS, vol. 652, pp. 392–403. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  12. Diêu, P.D.: On a class of stochastic languages. Mathematical Logic Quarterly 17(1), 421–425 (1971)

    Article  MATH  Google Scholar 

  13. Yakaryilmaz, A.: Quantum Alternation. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 334–346. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salehi, Ö., Yakaryılmaz, A., Say, A.C.C. (2013). Real-Time Vector Automata. In: Gąsieniec, L., Wolter, F. (eds) Fundamentals of Computation Theory. FCT 2013. Lecture Notes in Computer Science, vol 8070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40164-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40164-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40163-3

  • Online ISBN: 978-3-642-40164-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics