Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Evaluation of FHR Recordings from CTU-UHB CTG Database

  • Conference paper
Information Technology in Bio- and Medical Informatics (ITBAM 2013)

Abstract

Fetal heart rate (FHR) provides information about fetal well-being during labor. The FHR is usually the sole direct information channel from the fetus – undergoing the stress of labor – to the clinician who tries to detect possible ongoing hypoxia. For this paper, new CTU-UHB CTG database was used to compute more than 50 features. Features came from different domains ranging from classical morphological features based on FIGO guidelines to frequency-domain and non-linear features. Features were selected using the RELIEF (RELevance In Estimating Features) technique, and classified after applying Synthetic Minority Oversampling Technique (SMOTE) to the pathological class of the data. Nearest mean classifier with adaboost was used to obtain the final results. In results section besides the direct outcome of classification the top ten ranked features are presented.

An Erratum for this chapter can be found at http://dx.doi.org/10.1007/978-3-642-40093-3_12

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alfirevic, Z., Devane, D., Gyte, G.M.L.: Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Database Syst. Rev. 3(3), CD006066 (2006)

    Google Scholar 

  2. Bernardes, J., Costa-Pereira, A., de Campos, D.A., van Geijn, H.P., Pereira-Leite, L.: Evaluation of interobserver agreement of cardiotocograms. Int. J. Gynaecol. Obstet. 57(1), 33–37 (1997)

    Article  Google Scholar 

  3. Blix, E., Sviggum, O., Koss, K.S., Oian, P.: Inter-observer variation in assessment of 845 labour admission tests: comparison between midwives and obstetricians in the clinical setting and two experts. BJOG 110(1), 1–5 (2003)

    Article  Google Scholar 

  4. Chen, H.Y., Chauhan, S.P., Ananth, C.V., Vintzileos, A.M., Abuhamad, A.Z.: Electronic fetal heart rate monitoring and its relationship to neonatal and infant mortality in the United States. Am. J. Obstet. Gynecol. 204(6), 491.e1–491.e10 (2011)

    Article  Google Scholar 

  5. Norén, H., Amer-Wåhlin, I., Hagberg, H., Herbst, A., Kjellmer, I., Maršál, K., Olofsson, P., Rosén, K.G.: Fetal electrocardiography in labor and neonatal outcome: data from the Swedish randomized controlled trial on intrapartum fetal monitoring. Am. J. Obstet. Gynecol. 188(1), 183–192 (2003)

    Article  Google Scholar 

  6. Amer-Wåhlin, I., Maršál, K.: ST analysis of fetal electrocardiography in labor. Seminars in Fetal and Neonatal Medicine 16(1), 29–35 (2011)

    Article  Google Scholar 

  7. FIGO: Guidelines for the Use of Fetal Monitoring. International Journal of Gynecology & Obstetrics 25, 159–167 (1986)

    Google Scholar 

  8. ACOG: American College of Obstetricians and Gynecologists Practice Bulletin No. 106: Intrapartum fetal heart rate monitoring: nomenclature, interpretation, and general management principles. Obstet. Gynecol. 114(1), 192–202 (2009)

    Google Scholar 

  9. Blackwell, S.C., Grobman, W.A., Antoniewicz, L., Hutchinson, M., Gyamfi Bannerman, C.: Interobserver and intraobserver reliability of the NICHD 3-Tier Fetal Heart Rate Interpretation System. Am. J. Obstet. Gynecol. 205(4), 378.e1–378.e5 (2011)

    Article  Google Scholar 

  10. de Campos, D.A., Ugwumadu, A., Banfield, P., Lynch, P., Amin, P., Horwell, D., Costa, A., Santos, C., Bernardes, J., Rosen, K.: A randomised clinical trial of intrapartum fetal monitoring with computer analysis and alerts versus previously available monitoring. BMC Pregnancy Childbirth 10, 71 (2010)

    Article  Google Scholar 

  11. Dawes, G.S., Visser, G.H., Goodman, J.D., Redman, C.W.: Numerical analysis of the human fetal heart rate: the quality of ultrasound records. Am. J. Obstet. Gynecol. 141(1), 43–52 (1981)

    Google Scholar 

  12. de Campos, D.A., Sousa, P., Costa, A., Bernardes, J.: Omniview-SisPorto 3.5 - A central fetal monitoring station with online alerts based on computerized cardiotocogram+ST event analysis. Journal of Perinatal Medicine 36(3), 260–264 (2008)

    Google Scholar 

  13. Task-Force: Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 17(3), 354–381 (March 1996)

    Google Scholar 

  14. Magenes, G., Signorini, M.G., Arduini, D.: Classification of cardiotocographic records by neural networks. In: Proc. IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000, vol. 3, pp. 637–641 (2000)

    Google Scholar 

  15. Gonçalves, H., Rocha, A.P., de Campos, D.A., Bernardes, J.: Linear and nonlinear fetal heart rate analysis of normal and acidemic fetuses in the minutes preceding delivery. Med. Biol. Eng. Comput. 44(10), 847–855 (2006)

    Article  Google Scholar 

  16. Van Laar, J., Porath, M., Peters, C., Oei, S.: Spectral analysis of fetal heart rate variability for fetal surveillance: Review of the literature. Acta Obstetricia et Gynecologica Scandinavica 87(3), 300–306 (2008)

    Article  Google Scholar 

  17. Georgoulas, G., Stylios, C.D., Groumpos, P.P.: Feature Extraction and Classification of Fetal Heart Rate Using Wavelet Analysis and Support Vector Machines. International Journal on Artificial Intelligence Tools 15, 411–432 (2005)

    Article  Google Scholar 

  18. Ferrario, M., Signorini, M.G., Magenes, G., Cerutti, S.: Comparison of entropy-based regularity estimators: application to the fetal heart rate signal for the identification of fetal distress. IEEE Trans. Biomed. Eng. 53(1), 119–125 (2006)

    Article  Google Scholar 

  19. Gonçalves, H., Bernardes, J., Rocha, A.P., de Campos, D.A.: Linear and nonlinear analysis of heart rate patterns associated with fetal behavioral states in the antepartum period. Early Hum. Dev. 83(9), 585–591 (2007)

    Article  Google Scholar 

  20. Spilka, J., Chudáček, V., Koucký, M., Lhotská, L., Huptych, M., Janků, P., Georgoulas, G., Stylios, C.: Using nonlinear features for fetal heart rate classification. Biomedical Signal Processing and Control 7(4), 350–357 (2012)

    Article  Google Scholar 

  21. Georgoulas, G., Stylios, C.D., Groumpos, P.P.: Predicting the risk of metabolic acidosis for newborns based on fetal heart rate signal classification using support vector machines. IEEE Trans. Biomed. Eng. 53(5), 875–884 (2006)

    Article  Google Scholar 

  22. Czabanski, R., Jezewski, M., Wrobel, J., Jezewski, J., Horoba, K.: Predicting the risk of low-fetal birth weight from cardiotocographic signals using ANBLIR system with deterministic annealing and epsilon-insensitive learning. IEEE Trans. Inf. Technol. Biomed. 14(4), 1062–1074 (2010)

    Article  Google Scholar 

  23. Georgieva, A., Payne, S.J., Moulden, M., Redman, C.W.G.: Artificial neural networks applied to fetal monitoring in labour. Neural Computing and Applications 22(1), 85–93 (2013)

    Article  Google Scholar 

  24. Georgoulas, G., Gavrilis, D., Tsoulos, I.G., Stylios, C.D., Bernardes, J., Groumpos, P.P.: Novel approach for fetal heart rate classification introducing grammatical evolution. Biomedical Signal Processing and Control 2, 69–79 (2007)

    Article  Google Scholar 

  25. Sheiner, E., Hadar, A., Hallak, M., Katz, M., Mazor, M., Shoham-Vardi, I.: Clinical significance of fetal heart rate tracings during the second stage of labor. Obstet. Gynecol. 97(5, pt. 1), 747–752 (2001)

    Article  Google Scholar 

  26. Chudáček, V., Spilka, J., Burša, M., Janků, P., Hruban, L., Huptych, M., Lhotská, L.: Open access intrapartum CTG database: Stepping stone towards generalization of technical findings on CTG signals. PLoS ONE (manuscript submitted for publication, 2013)

    Google Scholar 

  27. Chudáček, V., Spilka, J., Lhotská, L., Janků, P., Koucký, M., Huptych, M., Burša, M.: Assessment of features for automatic CTG analysis based on expert annotation. In: Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, pp. 6051–6054 (2011)

    Google Scholar 

  28. Cesarelli, M., Romano, M., Bifulco, P.: Comparison of short term variability indexes in cardiotocographic foetal monitoring. Comput. Biol. Med. 39(2), 106–118 (2009)

    Article  MathSciNet  Google Scholar 

  29. de Haan, J., van Bemmel, J., Versteeg, B., Veth, A., Stolte, L., Janssens, J., Eskes, T.: Quantitative evaluation of fetal heart rate patterns. I. Processing methods. European Journal of Obstetrics and Gynecology and Reproductive Biology 1(3), 95–102 (1971), cited By (since 1996) 13

    Article  Google Scholar 

  30. Yeh, S.Y., Forsythe, A., Hon, E.H.: Quantification of fetal heart beat-to-beat interval differences. Obstet. Gynecol. 41(3), 355–363 (1973)

    Google Scholar 

  31. Pardey, J., Moulden, M., Redman, C.W.G.: A computer system for the numerical analysis of nonstress tests. Am. J. Obstet. Gynecol. 186(5), 1095–1103 (2002)

    Article  Google Scholar 

  32. Signorini, M.G., Magenes, G., Cerutti, S., Arduini, D.: Linear and nonlinear parameters for the analysis of fetal heart rate signal from cardiotocographic recordings. IEEE Trans. Biomed. Eng. 50(3), 365–374 (2003)

    Article  Google Scholar 

  33. Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory. Phys. D 31(2), 277–283 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kinsner, W.: Batch and real-time computation of a fractal dimension based on variance of a time series. Technical report, Department of Electrical & Computer Engineering, University of Manitoba, Winnipeg, Canada (1994)

    Google Scholar 

  35. Sevcik, C.: A Procedure to Estimate the Fractal Dimension of Waveforms. Complexity International 5 (1998)

    Google Scholar 

  36. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1), 82–87 (1995)

    Article  Google Scholar 

  37. Pincus, S.: Approximate entropy (ApEn) as a complexity measure. Chaos 5 (1), 110–117 (1995)

    Article  MathSciNet  Google Scholar 

  38. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), H2039–H2049 (2000)

    Google Scholar 

  39. Pincus, S.M., Viscarello, R.R.: Approximate entropy: a regularity measure for fetal heart rate analysis. Obstet. Gynecol. 79(2), 249–255 (1992)

    Google Scholar 

  40. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Transactions on Information Theory IT-22(1), 75–81 (1976)

    Article  MathSciNet  Google Scholar 

  41. Theodoridis, S., Koutroumbas, K.: Pattern recognition, 4th edn. (2009)

    Google Scholar 

  42. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.: Feature extraction: foundations and applications, vol. 207. Springer (2006)

    Google Scholar 

  43. Webb, A.R.: Statistical pattern recognition. Wiley (2003)

    Google Scholar 

  44. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter 6(1), 1–6 (2004)

    Article  Google Scholar 

  45. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)

    MATH  Google Scholar 

  46. Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: International Conference on Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  47. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, p. 1. John Wiley Section 10, New York (2001)

    MATH  Google Scholar 

  48. Fulcher, B., Georgieva, A., Redman, C., Jones, N.: Highly comparative fetal heart rate analysis. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), August 28-September 1, pp. 3135–3138 (2012)

    Google Scholar 

  49. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  50. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spilka, J. et al. (2013). Automatic Evaluation of FHR Recordings from CTU-UHB CTG Database. In: Bursa, M., Khuri, S., Renda, M.E. (eds) Information Technology in Bio- and Medical Informatics. ITBAM 2013. Lecture Notes in Computer Science, vol 8060. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40093-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40093-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40092-6

  • Online ISBN: 978-3-642-40093-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics