Nothing Special   »   [go: up one dir, main page]

Skip to main content

Face Verification Using Color Sparse Representation

  • Conference paper
The International Workshop on Digital Forensics and Watermarking 2012 (IWDW 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7809))

Included in the following conference series:

Abstract

This paper proposes an effective method for face verification using color sparse representation. In the proposed method, sparse representations are separately applied to multiple color bands of face images. The complementary residuals obtained from the multiple color face images are merged by means of score-level fusion, yielding improved discrimination capability for face verification. Experimental results using two public face databases (CMU Multi-PIE and Color FERET) showed that the proposed face verification method is highly robust under challenging conditions, compared to the conventional methods using grayscale sparse representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A.K., Ross, A., Prabhakar, S.: An Introduction to Biometric Recognition. IEEE Trans. on. Circuits and Systems for Video Technology 14(1), 4–20 (2004)

    Article  Google Scholar 

  2. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. Journal of ACM Computing Surveys 35(4), 399–458 (2003)

    Article  Google Scholar 

  3. Duda, R., Hart, P., Stork, D.: Pattern Classification, second edition, 2nd edn. John Wiley & Sons (2001)

    Google Scholar 

  4. Ho, J., Yang, M., Lim, J., Lee, K., Kriegman, D.: Clustering Appearances of Object under Varying Illumination Conditions. In: IEEE Int’l Conf. on Computer Vision and Pattern Recognition (2003)

    Google Scholar 

  5. Vapnik, V.: The Nature of Statistical Learning Theory. Springer (2000)

    Google Scholar 

  6. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust Face Recognition via Sparse Representation. IEEE Trans. on Pattern Analysis and Machine Intelligence 31(2), 210–227 (2009)

    Article  Google Scholar 

  7. Choi, J.Y., Ro, Y.M., Plataniotis, K.N.: Color Face Recognition for Degraded Face Images. IEEE Trans. on Systems, Man, and Cybernetics 39(5), 1217–1230 (2009)

    Article  Google Scholar 

  8. Shih, P., Liu, C.: Improving the Face Recognition Grand Challenge Baseline Performance Using Color Configurations Across Color Spaces. In: Proc. IEEE Int’l Conf. on Image Processing (2006)

    Google Scholar 

  9. Gross, R., Matthews, I., Cohm, J., Kanade, T., Baker, S.: Multi-PIE. In: Proc. IEEE Int’l Conf. on Automatic Face and Gesture Recognition (2008)

    Google Scholar 

  10. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET Evaluation Methodology for Face Recognition Algorithms. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  11. Ross, A., Jain, A.K.: Information Fusion in Biometrics. Pattern Recognition Letters 24(13), 2115–2125 (2003)

    Article  Google Scholar 

  12. Sanderson, C., Paliwal, K.K.: Fast feature for face authentication under illumination direction changes. Pattern Recognition Letters 24(14), 2409–2419 (2003)

    Article  Google Scholar 

  13. Ahonen, T., Hadid, A., Pietikäinen, M.: Face Description with Local Binary Pattern: Application to Face Recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(12), 2037–2041 (2006)

    Article  MATH  Google Scholar 

  14. Liu, C., Wechsler, H.: Gabor Feature Based Classification using the Enhanced Fisher Linear Discriminant Model for Face Recognition. IEEE Trans. on Image Processing 11(4), 467–476 (2002)

    Article  Google Scholar 

  15. Jabid, T., Kabir, M.H., Chae, O.: Local Directional Pattern (LDP) for Face Recognition. In: IEEE Int’l Conf. on Consumer Electronics (2010)

    Google Scholar 

  16. Choi, J.Y., Ro, Y.M., Plataniotis, K.N.: Using Colour Local Binary Pattern Features for Face Recognition. In: IEEE Int’l Conf. on Image Processing (2010)

    Google Scholar 

  17. Choi, J.Y., Ro, Y.M., Plataniotis, K.N.: Boosting color feature selection for color face recognition. IEEE Trans. on Image Processing 20(5), 1–10 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shin, W.J., Lee, S.H., Min, HS., Sohn, H., Ro, Y.M. (2013). Face Verification Using Color Sparse Representation. In: Shi, Y.Q., Kim, HJ., Pérez-González, F. (eds) The International Workshop on Digital Forensics and Watermarking 2012. IWDW 2012. Lecture Notes in Computer Science, vol 7809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40099-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40099-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40098-8

  • Online ISBN: 978-3-642-40099-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics