Abstract
Computing a template in the Large Deformation Diffeomorphic Metric Mapping framework is a key step for the shape analysis of anatomical structures, but can lead to very computationally expensive algorithms in the case of large databases. We present an iterative method which quickly provides a centroid of the population in shape space. This centroid can be used as a rough template estimate or as initialization for template estimation methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Grenander, U., Miller, M.I.: Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics 56(4), 617–694 (1998)
Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing 5(10), 1435–1447 (1996)
Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision 61(2), 139–157 (2005)
Ma, J., Miller, M.I., Trouvé, A., Younes, L.: Bayesian template estimation in computational anatomy. NeuroImage 42(1), 252–261 (2008)
Glaunès, J., Joshi, S.: Template estimation from unlabeled point set data and surfaces for computational anatomy. In: Pennec, X., Joshi, S. (eds.) Proc. of the International Workshop on the Mathematical Foundations of Computational Anatomy (MFCA 2006), pp. 29–39 (October 1, 2006)
Durrleman, S., Pennec, X., Trouvé, A., Ayache, N., et al.: A forward model to build unbiased atlases from curves and surfaces. In: 2nd Medical Image Computing and Computer Assisted Intervention. Workshop on Mathematical Foundations of Computational Anatomy, pp. 68–79 (2008)
Durrleman, S., Prastawa, M., Korenberg, J.R., Joshi, S., Trouvé, A., Gerig, G.: Topology preserving atlas construction from shape data without correspondence using sparse parameters. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 223–230. Springer, Heidelberg (2012)
Vaillant, M., Glaunès, J.: Surface matching via currents. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 381–392. Springer, Heidelberg (2005)
Glaunes, J.: Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l’anatomie numérique. PhD thesis, Université Paris 13 (2005)
Yang, X., Goh, A., Qiu, A.: Approximations of the diffeomorphic metric and their applications in shape learning. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 257–270. Springer, Heidelberg (2011)
Tenenbaum, J., Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)
Arnaudon, M., Nielsen, F.: On approximating the riemannian 1-center. Computational Geometry 46(1), 93–104 (2013)
Chupin, M., Hammers, A., Liu, R.S.N., Colliot, O., Burdett, J., Bardinet, E., Duncan, J.S., Garnero, L., Lemieux, L.: Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation. NeuroImage 46(3), 749–761 (2009)
Durrleman, S., Pennec, X., Trouvé, A., Ayache, N.: Statistical models of sets of curves and surfaces based on currents. Medical Image Analysis 13(5), 793–808 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cury, C., Glaunès, J.A., Colliot, O. (2013). Template Estimation for Large Database: A Diffeomorphic Iterative Centroid Method Using Currents. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2013. Lecture Notes in Computer Science, vol 8085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40020-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-40020-9_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40019-3
Online ISBN: 978-3-642-40020-9
eBook Packages: Computer ScienceComputer Science (R0)