Abstract
The probability distribution function of residual life after well-defined tolerable faults is given. Depending on the joint distribution(s) of lives of (a) set(s) of components, ready-to-use formulas are derived. As a non-trivial example a cubic multicomputer tolerating single and some double faults is discussed under the assumption that a ring of 6 computers must be kept active. The cases of nodes consisting of small communications processors with bigger hosts and of nodes being micro computers are considered.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schneeweiss W., Karpinski J.: The theory of delayed repair for all systems with 2 or 3 components. Informatikber. 12/1986. Fernuniversität Hagen.
Schneeweiss W.: On a special Boolean algebra for indicator variables, ntz Archiv 3 (1981), 53–56.
Barlow R., Proschan F.: Mathematical theory of reliability, New York: Wiley 1965.
Schneeweiss W.: Steady State Reliability of Hypercube Multicomputers Tolerating Single or Double Faults. Proc. 1st European Workshop on Fault Diagnostics, Reliability and Related Knowledge-Based Approaches. Amsterdam: Reidel 1987.
Schneeweiss W.: The distribution of residual life after tolerable faults. Informatikber. 5/1987. Fernuniversität Hagen.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1987 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schneeweiss, W.G. (1987). The Distribution of Computer Life after Tolerable Faults. In: Belli, F., Görke, W. (eds) Fehlertolerierende Rechensysteme / Fault-Tolerant Computing Systems. Informatik-Fachberichte, vol 147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45628-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-45628-2_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-18294-8
Online ISBN: 978-3-642-45628-2
eBook Packages: Springer Book Archive